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1 Introduction

STATIC DECISION POROBLEMS

1.1 Various Informational Settings of Decision Problems

1. Decision problems under certainty

Agent’s choice variables (actions) lead to a certain payoff

a1 → u1

a2 → u2

. → .

. → .

→ cf. e.g. classic consumer or producer theory (micro lecture)

2. Strategic Interdependencies

Actions b1 b2 ..

a1 (u11, v11) (u12, v12) ..

a2 (u21, v21) (u22, v22) ..

. . . .

→ Game Theory analyzes situations where an agent’s payoff may not solely depend

on her own actions but also (in part) on another agent’s actions (e.g. the utility one

draws from dining with a friend may depend on the dress she’s wearing)

3. Uncertainty

States of the world/actions z1 z2 ..

a1 (u11) (u12) ..

a2 (u21) (u22) ..

. . . .

Decisions under uncertainty can be modeled as games where the player that draws

first (nature) does not act strategically but picks her ”action” according to a given
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probability distribution. That probability distribution is usually assumed to be com-

mon knowledge amongst all the other players (inter alia to make sure their beliefs are

consistent). Nature’s actions are commonly refered to as “states of the world”.

Example: Choice of career

(a) Bavarian Gov’t worker: 5.000,-

(b) Entrepreneur: 20.000,- : z1

or: 1.000,- : z2

Lottery: L1 = ( 1 , 0 ; 5.000 , 0 )

L2 = ( p , 1-p ; 20.000 , 1.000 )

4. Strategic interdependencies under uncertainty

• Principal-Agent-issues

→ Economics of Information: The principal’s payoff may not be solely contingent on

the agent’s effort choice but may also be subject to the whims of Fortune (e.g. firm

owner’s profit).

1.2 Main Elements of our Analysis

(a) Choice Variables (Actions) A = {a1, ..., an}

(b) States of the World Z = {z1, ..., zm}

(c) Probability Vectors P = {p1, ..., pn} with pj = (pj
1, ..., p

j
m)

exhibiting the following properties: 0 ≤ pj
i ≤ 1∀i, j Σm

i=1p
j
i = 1∀i

(d) Payoff Vectors X = {x1, x2, ..., xn} with xj = (xj1, xj2, ..., xjm)

Set of Lotteries: L = {L1, ..., Ln} Lj := (pj : xj)

What we’re after: a? ∈ A, that will optimize ..?...

In order for us to be able to solve this decision problem, we need a preference

ordering over lotteries! We’ll now throw a glance at a few possible candidates.

1.3 Pros & Cons of Some Possible Decision Criteria

1. Expected Value of a Lottery

L1 � L2 ⇔ µ1 = Σp1
ix1i ≥ µ2 = Σp2

ix2i
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pro: Under certain circumstances, Evolution may favor expected value maximizing

individuals.

con:

L1 = (1/2, 0, 1/2; 10.000, 5.000, 10)

L2 = (0, 1, 0; 10.000, 5.000, 10)

µ1 = 5.005 > µ2 = 5.000

Risk is being ignored.

Utility function: U(Lj) = µj

(e.g. risk-neutral firms, Gov’t)

2. The Maximin-Criterion

L1 ≥ L2 ⇔ mini[x1i|p1
i > 0] ≥ mini[x2i|p2

i > 0]

pro: takes account of losses/ unfavorable outcomes

con: L1 =( 0,99 , 0,01 ; 10.000 , 0 )

L2=( 0 , 1 ; 10.000 , 5.000 )

⇒ L2 ≥ L1

Problem: Losses may be over-emphasized (unlikely though they may be)

Utility: U(Lj) = mini[xji|pj
i > 0]

(very risk-averse indivduals)

3. The µ− σ-Criterion

Basic idea: Agents will like a big payout (µ), but they will dislike risk (σ)

Utility: U(Lj) = µj − kσj [= f(µj, kσj)]

µj = Σip
j
ixji

σ2
j = Σip

j
i (xji − µj)

2

(k is a measure of agent’s risk-aversion)

pro: - rather intuitive; easy to handle

con: - Further moments of the distribution, such as (e.g.) curtosis, are being ignored.

3



Example:

L1 = (50/100, 49/100, 1/100; 102, 100, 0)

L2 = (1/2, 1/2; 100 + 102, 100− 102)

⇒ µ1 = µ2 = 100, σ1 = σ2 = 102

⇒ L1 ∼ L2

!!! This criterion is commonly used in capital markets theory (CAPM)

4. Expected Utility

Swiss mathematician Daniel Bernoulli (1738) came up with a solution to the St.Petersburg

Paradox :

• Toss a coin time and again for as long as it is showing tails;

• As soon as it is showing heads, the game is over and the gambler, who bought

into the bet, will get a pay-out of 2n+1, where n is the number of times the coin

had previously been showing tails.

Expected value of pay-out:

µ = 1/2 ∗ 2 + 1/2(1/2 ∗ 22) + 1/2 ∗ 1/2 ∗ 1/2 ∗ 23 + ... = 1 + 1 + 1 + ... = +∞
Bernoulli’s proposal: u(x) = ln(x)

→ U(L) = 1/2 ∗ ln(2) + 1/4 ∗ ln(4) + ... < +∞

U(Lj) = Σip
j
iu(xji)

Looks swell alright, but can this criterion be generalized??

This question we’ll endeavor to answer in the following chapter.
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2 Expected Utility Theory

In their seminal work “Theory of Games and Economic Behavior” (1944), John von Neumann

and Oscar Morgenstern develop the axiomatic foundations of Expected Utility Theory.1We

shall first expose the axioms (2.1.), from which we will then derive the pivotal vNM-theorem

(2.2.). We shall conclude by looking at some basic properties of vNM-utility functions (2.3.).

2.1 The Axioms

Let L be a set of lotteries

{L1, ..., Ln} ≡ L.

Let there be a “standard lottery” (1− u, u;xmin, xmax)

where u = Prob(xmax), and where xmin and xmax be chosen in such a way that the following

weak inequalities hold:

xmin ≤ x ∀x ∈ X and xmax ≥ x ∀x ∈ X

where X is the matrix consisting of the pay-off vectors Xi pertaining to lotteries Li ∈ L

1. Axiom 1: Ordering of Lotteries

Completeness:

∀(Li, Lj) ∈ (L× L) : Li � Lj ∨ Lj � Li

i.e. For any two given lotteries, an individual will always be able to tell which one she

likes better.

Transitivity:

∀(Li, Lj, Lk) ∈ (L× L× L)

1Von Neumann, J. and O.Morgenstern; Theory of Games and Economic Behavior; Princeton, N.J.;
Princeton University Press
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(Li � Lj ∧ Lj � Lk) =⇒ Li � Lk

i.e. If agent likes oranges better than apples and apples better than pears, we can infer

from that that she likes oranges better than pears, too.

Reflexivity:

∀Li ∈ L : Li � Li

i.e. 1 lb of apples is no worse than 1 lb of apples.

This first axiom is sometimes refered to as the “rationality axiom”. It is perfectly

analogous to similar axioms in standard micro theory under certainty.

2. Axiom 2: Preferences over Probabilities

Let there be standard lotteries Li ∈ L with Li = (1− ui, ui;xmin, xmax)

L1 � L2 ⇐⇒ u1 ≥ u2

This axiom is very much akin to the axiom of local non-satiation, which we know from

standard consumer theory. It says that, given a choice between two standard lotteries,

agent will prefer the one with more probability mass on xmax.

3. Axiom 3: Continuity

∀x ∈ [xmin;xmax] : ∃u(x) ∈ [0; 1] s.d.

x ∼ (1− u(x), u(x);xmin, xmax)

This says that for any given lottery, it is always possible to construct a standard lottery

such that agent be indifferent between the two.

Example:

xmin = 0, xmax = 10.000, x = 1.000

In that case, agent is indifferent between getting a certain payment of 1.000 or getting

10.000 with probability u(1.000).

4. Axiom 4: Independence

∀(Li, Lj, Lk) ∈ (L× L× L) with Li � Lj and ∀ω ∈ [0; 1]:

(1− ω, ω;Li, Lk) � (1− ω, ω;Lj, Lk)
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This looks rather plausible: With both lotteries agent will get Lk with probability ω.

But with the first lottery, she’ll get Li with probability 1− ω, whereas with the same

probability she’ll only get Lj (which, by hypothesis, is worse than Li) with the second

lottery. Thus, we’d assume she’d rather have the first lottery. Empirical findings

suggest, however, that this independence axiom may in some instances be problematic

(cf. last chapter of this lecture). Indeed, the axiom presupposes that:

• Agents can handle compound lotteries (i.e. lotteries over lotteries)

• Agents are aware that there are no complement effects between lotteries

For example:

Figure 1: The Independence Axiom

7



2.2 The vNM-Theorem

Definition A vNM-utility function is a function U(Li) such that U(Li) =
∑

j piju(xij)

where

Li ∈ L

pij is the probability of payoff xij ∈ Xi

u(xij) is given by axiom (c)

Theorem 2.1 Given axioms (1)-(4), agent will be acting as though she were maximizing a

vNM-utility function.

Proof We’ll give proof for the simplest of cases, where there is a lottery L with only two

possible outcomes. (However, proof is perfectly analogous for any bounded set of possible

outcomes, as you can easily verify.)

Let there be L = (1− w,w;x1, x2)

What we’re after: U(L) s.t.

L ∼ (1− U(L), U(L);xmin, xmax)

Axiom (c): x1 ∼ (1− u(x1), u(x1);xmin, xmax) ≡ I(x1)

Axiom (d): L ∼ (1− w,w, ; I(x1), x2)

Axiom (d) again: L ∼ (1− w,w; I(x1), I(x2))

Note that this is a standard lottery.

Add up the probs:

xmax: Prob(xmax) = w · u(x2) + (1− w) · u(x1)

xmin: Prob(xmin) = w · (1− u(x2)) + (1− w) · (1− u(x1))

= 1− [w · u(x2)− (1− w) · u(x1)]

Thus: L ∼ (1− U(L), U(L);xmin, xmax)

=⇒ U(L) = w · u(x2) + (1− w) · u(x1)

Q.E.D.
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Figure 2: Event Tree

2.3 Basic Properties of vNM-Utility

2.3.1 Transformations

1. u(x) is unique up to a positive linear transformation; u(x) (Bernoulli utility) is a

cardinal utility function (as opposed to the utility functions we know from standard

consumer theory, that are ordinal utility functions, i.e. unique up to a positive mono-

tonic transformation, be that linear or not).

Corollary 2.2 If u and v be Bernoulli utility functions that represent the same prefer-

ences, then there exist constants a, b, with a ∈ R and b ∈ R+ such that v(x) = a+bu(x).

Proof Choose a and b such that the following hold:

v(xmax) = a+ bu(xmax)

v(xmin) = a+ bu(xmin)

Now consider xmin < x < xmax. On account of axiom (c) ∃p ∈]0; 1[ such that

x ∼ (1− p, p;xmin, xmax)

⇒ u(x) = pu(xmax) + (1− p)u(xmin)
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and v(x) = pv(xmax) + (1− p)v(xmin)

Plugging in from above, we get:

v(x) = p[a+ bu(xmax)] + (1− p)[a+ bu(xmin)]

⇐⇒ v(x) = a+ b[pu(xmax) + (1− p)u(xmin)]

However, since pu(xmax) + (1− p)u(xmin) = u(x), it follows q.e.d.

2. U(L) is an ordinal utility function, and hence unique up to a positive monotonic trans-

formation:

e.g. U(L) = Σpiu(xi)

V (L) = exp[Σpiu(xi)]

2.3.2 Additional Assumptions

In our analyses, we shall most of the time make some additional assumptions. But, first, we

will need some definitions:

Definition A function f : Sf −→ A ⊂ R is said to be (globally) concave iff ∀(x1, x2) ∈
Sf × Sf : f [kx1 + (1− k)x2] ≥ kf(x1) + (1− k)f(x2) ∀k ∈ [0; 1].

It is said to be strictly concave iff the inequality is strict, i.e. iff ∀(x1, x2) ∈ Sf × Sf :

f [kx1 + (1− k)x2] > kf(x1) + (1− k)f(x2) ∀k ∈]0; 1[.

For at least three times continuously differentiable f , f is strictly concave iff f ′′(x) < 0

∀x ∈ Sf .

Definition A function f : Sf −→ A ⊂ R is said to be (globally) convex iff ∀(x1, x2) ∈
Sf × Sf : f [kx1 + (1− k)x2] ≤ kf(x1) + (1− k)f(x2) ∀k ∈ [0; 1].

It is said to be strictly convex iff the inequality is strict, i.e. iff ∀(x1, x2) ∈ Sf × Sf :

f [kx1 + (1− k)x2] < kf(x1) + (1− k)f(x2) ∀k ∈]0; 1[.

For at least three times continuously differentiable f , f is strictly convex iff f ′′(x) > 0

∀x ∈ Sf .
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Definition A function f : Sf −→ A ⊂ R is said to be (globally) linear iff it is continuously

differentiable and f ′′(x) = 0 ∀x ∈ Sf .

Definition An agent with utility function u is said to be risk–averse iff she prefers the

expected value of a lottery L over the lottery itself, i.e. iff

E[u(L)] < u[E(L)]

Definition An agent with utility function u is said to be risk–attracted or risk–loving iff

she prefers a lottery L over E(L), i.e. iff

E[u(L)] > u[E(L)]

Definition An agent with utility function u is said to be risk–neutral iff she is indifferent

between a lottery L and its expected value, i.e. iff

E[u(L)] = u[E(L)]

In our analyses, we shall usually assume the following:

1. u(x) is differentiable with u′(x) > 0

2. u(x) is concave: u′′(x) < 0

Corollary 2.3 Let u be a utility function that is at least three times continuously differen-

tiable, with u′ > 0 and u′′ < 0.

Then u depicts risk-aversion.

Proof From Jensen’s Inequality (which we shall prove in class), we know that for any

concave function u, the following holds:

E[u(x)] ≤ u(E[x])

Q.E.D.
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Figure 3: Jensen’s Inequality

Example Consider a risk–averse agent with utility function u and a very simple lottery L

with L ∼ (1− p, p;x1, x2)

U(x1, x2) = (1− p)u(x1) + pu(x2)

On an indifference curve, the following will hold: dU = (1− p)u′(x1)dx1 + pu′(x2)dx2 =! 0

=⇒ −dx2/dx1 = (1−p)u′(x1)
pu′(x2)

=:MRS

The Marginal Rate of Substitution (MRS) indicates the rate at which an agent is willing

to exchange income in state 2 for income in state 1, with her utility level held constant. It

is equal to the absolute value of the slope of her indifference curve at the pertaining point.
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Figure 4: States of the World Diagram

1. d2x2/dx
2
1 = −(1− p)/pu′2[u

′′
1 + 1− p/p(u′1/u

′
2)

2u′′2] > 0

i.e. indifference curves are strictly convex

2. x1 = x2 =⇒ dx2/dx1 = −(1− p)/p

i.e. For variations on the margin at the certainty level, any and every risk–averse

agent will behave as though she were risk–neutral. At the certainty level, risk–costs

are second—order!

3. Risk–neutral agent (expected value criterion)

=⇒ u(x) = x

U = (1− p)x1 + px2

=⇒ dx2/dx1 = −(1− p)/p

i.e. A risk–neutral agent’s indifference curves will be linear.

4. Maximin-criterion (Leontief–preferences): U = min(x1, x2)
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3 Measures of Risk–Aversion

In this chapter we’ll examine the question of how to measure risk–aversion, and, hence, how

to compare different agents with respect to the degree of their aversion to risk. After some

introductory definitions and remarks (3.1.), we shall define the Pratt–Arrow–measures of

risk–aversion (3.2.). These being but local measures, we’ll move on to try and define risk–

attitudes globally (Pratt–theorem, 1964; 3.3.). Finally, we’ll briefly look at some alternative

measures (3.4.). We’ll limit our analysis to lotteries that generate monetary pay–offs (or,

equivalently, that generate outcomes that can be translated into monetary pay–offs).

3.1 Introduction

Thus far, we have derived the Pratt–Arrow–theorem and we have defined the concept of

risk–aversion. Now, we’re interested in determining under what circumstances an agent can

be said to be more risk–averse than another. In that quest, the following definitions will

prove useful:

Definition The certainty equivalent x̂ of a lottery L is a certain payment of such amount as

will make agent indifferent between getting the lottery L and geting its certainty equivalent

x̂, i.e. (if u be agent’s utility function)

u(x̂) = E[u(L)]

Definition The (equivalent) risk premium r for a given agent and a given lottery is defined

as

r := x̄− x̂

where x̄ ≡ E(L)

Thus, the equivalent risk premium indicates how much of certain income a given individual

is willing to sacrifice so as to avoid a given risk.2 Hence r amounts to agent’s maximum

2By contrast, the compensating risk premium is the amount of certain income necessary to make agent
willing to take on a given risk. In this course, we shall only use the equivalent risk premium, which will
heretofore be plainly referred to as the risk premium r.
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willingness to pay for avoidance of a given risk. This implies the following:

Agent A is said to be more risk–averse than agent B if for the same given risk A’s willingness

to pay to avoid that risk (her risk premium rA) is larger than B’s willingness to pay to avoid

that risk (her risk premium rB).

Corollary 3.1 (a) The risk premium is strictly positive iff agent is risk–averse.

(b) The risk premium is strictly negative iff agent is risk–loving.

(c) The risk premium is zero iff agent is risk–neutral.

Proof By definition: r = x̄− x̂ (1).

Also by definition: u(x̂) = E[u(L)] (2).

From Jensen’s Inequality, we know that E[u(L)] < u(E[L]) iff u is strictly concave (3).

From (1) it follows that r > 0 ⇐⇒ x̄ > x̂ ⇐⇒ u(x̄) > u(x̂) (since u′ > 0 by hypothesis).

From (2) it follows that u(x̄) > u(x̂) ⇐⇒ u(x̄) > E[u(L)] ⇐⇒ u(E[L]) > E[u(L)]. (as

x̄ ≡ E[L])

From (3) it then follows that r > 0 ⇐⇒ u strictly concave.

By the same token, (b) and (c) are in a similar way implied by the very definitions of

strict convexity and linearity respectively (cf. Chapter 2).

3.2 The Pratt–Arrow–Measures of Risk–Aversion

3.2.1 Introduction

By considering the following figure, the intuition may arise that the size of the risk premium

might have something to do with “how strongly convex” the utility function is. Since the

second–order derivative is a measure of the curvature of a differentiable function, one might

be led to believe that the risk premium was the bigger, i.e. that agent was the more risk–

averse, the larger the absolute value of the second–order derivative of her utility function was

at the pertaining point. Though not completely mistaken, this idea is, however, abstract-

ing from the fact that our cardinal utility functions are unique but up to a positive linear

transformation (cf. Chapter 2).
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Figure 5: Certainty Equivalent and Risk Premium

Indeed, let us consider two utility functions u(x) and v(x) = α + βu(x), with u(x̂) =

E[u(x)], i.e. x̂ be the certainty equivalent pertaining to utility function u for a given lottery

L with realizations x. Then: E[v(x)] = α + βE[u(x)] = α + βu(x̂) = v(x̂), i.e. x̂ is the

certainty equivalent for lottery L also for utility function v. E[L] = x̄ being independent of

the utility function, it follows that for a given lottery L, respective risk premia are equal for

both u and v. However, v′′(x) = βu′′(x) 6= u′′(x) if β 6= 1.

So, even though risk premia be the same for both utility functions, still, in the generic

case, u′′(x) 6= v′′(x). However, how about v′′(x)
v′(x)

= βu′′(x)
βu′(x)

= u′′(x)
u′(x)

? As a matter of fact −u′′

u′

is known as the Pratt–Arrow–coefficient of absolute risk–aversion, as we shall be examining

more closely in the following sub—section.
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3.2.2 The Pratt–Arrow–Coefficient of Absolute Risk–Aversion

Hypotheses:

• u(x) be at least twice continously differentiable

• Lottery L with realizations x1, · · · , xn

• x̄ = 0

• x1, · · · , xn be “small” (so we can use a Taylor–Approximation)

• σ3
x, σ

4
x, · · · be “small” (so a second–order Taylor–Approximation is good enough)[For

standard distributions, this will usually be verified.]

• Initial wealth w

By definition: u(w + x̂) = Eu(w + x) =
∑
piu(w + xi)

Second Order Taylor Approximation: u(w + xi) ≈ u(w) + xiu
′(w) +

x2
i

2
u′′(w)

Applying the E—operator: Eu(w + x) ≈ u(w) + σ2
x

2
u′′(w)

By the same token, u(w + x̂) = u(w − rx) ≈ u(w)− rxu
′(w)

Since u(w + x̂) = Eu(w + x), it follows from the above that

u(w)− rxu
′(w) ≈ u(w) +

σ2
x

2
u′′(w)

⇐⇒ rx ≈ −u
′′(w)

u′(w)

σ2
x

2

As we have already mentioned above, A(w) ≡ −u′′(w)
u′(w)

is known as the Pratt–Arrow–

coefficient of absolute risk–aversion. Please do be mindful of the fact that the Pratt–Arrow–

coefficent is but a local measure, which evaluates risk–aversion for a given wealth level w.

With larger lotteries, it is but an approximation.

Risk tolerance R(w) is defined as R(w) = 1
A(w)

.
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3.2.3 The Pratt–Arrow–Coefficient of Relative Risk–Aversion

Now, consider a lottery of the following multiplicative structure: Final wealth wi be defined

as wi ≡ w(1 + xi), with xi denoting e.g. the interest rate. Whereas, before, the “amount of

risk” borne by agent was, as it were, fixed, here, it is increasing in the amount invested (i.e.

in initial wealth w).

Calculations and assumptions are analogous to those above:

u[w(1 + x̂)] = Eu[w(1 + x)] =
∑

piu[w(1 + xi)]

u[w(1 + xi)] ≈ u(w) + wxiu
′(w) +

1

2
w2x2

iu
′′(w)

⇒ Eu[w(1 + x)] ≈ u(w) +
w2

2
σ2

xu
′′(w)

By the same token, u[w(1 + x̂)] = u[w(1− ρx)] ≈ u(w)− wρxu
′(w)

Since Eu[w(1 + xi)] = u[w(1 + x̂)], it follows from the above that

u(w) +
w2

2
σ2

xu
′′(w) ≈ u(w)− wρxu

′(w)

⇐⇒ ρx ≈ −wu
′′(w)

u′(w)

σ2
x

2

Analogously to above, we define R(w) ≡ −w u′′(w)
u′(w)

as the Pratt–Arrow–Coefficient of Relative

Risk–Aversion and ρx as the relative risk premium. Note that R(w) = wA(w).

3.2.4 The Pratt–Arrow–Coefficient of Partial Risk–Aversion

Consider a lottery of the following structure: wi ≡ w0 + w1(1 + xi).

Calculations and assumptions are again analogous to those above:

u[w0 + w1(1 + x̂)] = Eu[w0 + w1(1 + x)] =
∑

piu[w0 + w1(1 + xi)]

u[w0 + w1(1 + xi)] ≈ u(w0 + w1) + w1xiu
′(w0 + w1) +

1

2
w2

1x
2
iu

′′(w0w1)

⇒ Eu[w0 + w1(1 + x)] ≈ u(w0 + w1(1 + x)] ≈ u(w0 + w1) +
1

2
σ2

xw
2
1u

′′(w0 + w1)

By the same token, u[w0 +w1(1 + x̂)] = u[w0 +w1(1− %̂x)] ≈ u(w0 +w1)−w1%̂xu
′(w0 +w1)
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Since Eu[w0 + w1(1 + x)] = u[w0 + w1(1 + x̂)], it follows from the above that

u(w0 + w1) +
1

2
σ2

xw
2
1u

′′(w0 + w1) ≈ u(w0 + w1)− w1%̂xu
′(w0 + w1)

⇐⇒ %̂x ≈ −w1
u′′(w0 + w1)

u′(w0 + w1)

σ2
x

2

Again, we define Rp(w) ≡ −w1
u′′(w0+w1)
u′(w0+w1)

as the Pratt–Arrow–Coefficient of Partial Risk–

Aversion and %̂x as the partial risk premium. Note that Rp(w0 + w1) = w1A(w0 + w1) =
w1

w0+w1
R(w0 + w1).

3.2.5 Some Common Assumptions

First, we need some definitions:

Definition An at least twice continuously differentiable utility function u is said to exhibit

the property of decreasing absolute risk aversion (DARA) iff dA(w)
dw

< 0.

It is said to exhibit the property of constant absolute risk aversion (CARA) iff dA(w)
dw

= 0.

It is said to exhibit the property of increasing absolute risk aversion (IARA) iff dA(w)
dw

> 0.

Definition An at least twice continuously differentiable utility function u is said to exhibit

the property of decreasing relative risk aversion (DRRA) iff dR(w)
dw

< 0.

It is said to exhibit the property of constant relative risk aversion (CRRA) iff dR(w)
dw

= 0.

It is said to exhibit the property of increasing relative risk aversion (IRRA) iff dR(w)
dw

> 0.

The following assumptions are usually held to be plausible:

• dA(w)
dw

< 0 i.e. decreasing absolute risk aversion (DARA) is implied, meaning, intu-

itively, that a pauper should suffer more from having to bet 10$ than Bill Gates.

• It is often assumed that dR(w)
dw

≥ 0 i.e. constant (CRRA) or increasing (IRRA) relative

risk–aversion is implied.

Remember that R(w) = wA(w), which implies that dR(w)
dw

= A(w) + w dA(w)
dw

.

Here, the term A(w) (which, for a risk–averse agent, will always be > 0) denotes that for a

lottery of the structure w(1+x), more income will be risky as w increases. This substitution
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effect will lead to an increasing of risk aversion as initial wealth w rises. However, for DARA

utility (dA(w)
dw

< 0), the income effect will work in the opposite direction, i.e. increasing initial

wealth will lead to a tapering of risk aversion as DARA—individuals will wax less sensitive

to their income being risky as they grow wealthier.

Example Be xi ∈ [−0, 1; 0, 1]. For w = 100, wi ∈ [90; 110]. However, for w = 10.000,

wi ∈ [9.000; 11.000].

3.2.6 Some Utility Functions

1. Quadratic Utility

u(w) = w − αw2

As will be discussed in class, quadratic functions are meaningful utility functions only

for a limited support. None the less, such functions are often used on account of their

being very easy to handle as agent is exclusively interested in the expected value and

the variance of a distribution (cf. class). For values of w within the support, A(w) is

given by:

A(w) = − −2α

1− 2αw

It follows that, as we would be wishing for from a decent utility function, A(w) > 0

within function u’s support. However:

dA(w)

dw
= (

2α

1− 2αw
)2 > 0

i.e. IARA is implied.

2. Logarithmic Utility

u(w) = lnw

A(w) =
w

w2
=

1

w

A′(w) = − 1

w2
< 0 DARA

R(w) = wA(w) = 1 CRRA

3. Power Utility

u(w) =
w1−σ

1− σ

u′(w) = w−σ

u′′(w) = −σw−σ−1
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⇒ A(w) =
σ

w

A′(w) = − σ

w2
< 0 DARA

R(w) = σ CRRA

4. Exponential Utility

u(w) = −e−αw

A(w) = α CARA

R(w) = wA(w) = wα IRRA (for α > 0)

5. Hyperbolic Utility (HARA—functions)

u(w) =
1− γ

γ
(
αw

1− γ
+ β)γ with

αw

1− γ
+ β ≥ 0

A(w) =
α

αw
1−γ

+ β

i.e. HARA—functions will exhibit linear risk tolerance (LRT), meaning A−1(w) is

linear in w.

3.3 Global Risk–Aversion (Pratt, 1964)

Consider a given lottery L and two utility functions uA and uB.

Theorem 3.2 The following statements are equivalent:

(a) AA(w) ≥ AB(w) ∀w

(b) rA(x,w) ≥ rB(x,w) ∀w, x

(c) uA(.) ≥ G(uB(.)), with G being a concave function

(d) uA(w3)−uA(w2)
uA(w1)−uA(w0)

≤ uB(w3)−uB(w2)
uB(w1)−uB(w0)

∀w0, w1, w2, w3 with w0 < w1 ≤ w2 < w3

We’ll not give complete proof of the entire theorem; the following examples may suffice:

• (c) ⇒ (b)

uA(w + x̄− rA(x,w))

= E[uA(w + x)]
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= E[G(uB(w + x))]

≤ G(E[uB(w + x)]) (Jensen)

= G(uB(w + x̄− rB(x,w)))

= uA(w + x̄− rB(x,w))

Q.E.D.

• (b) ⇒ (c)

uA(w + x̄− rA) = E[uA(w + x)] = E[G(uB(w + x))]

uA(w + x̄− rB) = G(uB(w + x̄− rB)) = G(E[uB(w + x)])

From Jensen’s Inequality, it follows Q.E.D.

• (c) ⇒ (a)

AA(w) = −u
′′
A(w)

u′A(w)
= −G

′u′′B +G′′u′2B
G′u′B

= AB(w)− G′′u′B
G′

Since G′′ < 0 < G′ and u′ > 0, it follows Q.E.D.

• (a) ⇒ (c)

AA(w) = −u
′′
A(w)

u′A(w)
= −G

′u′′B +G′′u′2B
G′u′B

For G′ > 0 and u′B > 0, it follows that AA(w) ≥ AB(w) ⇐⇒ G′′ ≤ 0

Q.E.D.

3.4 Extensions

3.4.1 The Measure of Absolute Prudence (Kimball, Econometrica 1990)

Let there be two periods, present and future, with c denoting present consumption and β

designating agent’s discount factor. Future consumption is subject to uncertainty x, with

x̄ = 0.

max
c
{u(c) + βE[u(w − c+ x)]}

FOC: u′(c) =! βE[u′(w − c+ x)]
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Let ψ denote the precautionary premium, such that E[u′(w− c+x)] = u′(w− c−ψ). Using

first— and second—order Taylor Approximations (as above), we can compute:

u′(w − c+ x) ≈ u′(w − c) + xu′′(w − c) +
1

2
x2u′′′(w − c)

⇒ Eu′(w − c+ x) ≈ u′(w − c) +
σ2

x

2
u′′′(w − c)

By the same token, u′(w − c− ψ) ≈ u′(w − c)− ψu′′(w − c).

Since Eu′(w − c+ x) = u′(w − c− ψ), it follows that

u′(w − c) +
σ2

x

2
u′′′(w − c) ≈ u′(w − c)− ψu′′(w − c)

⇐⇒ ψ ≈ −u
′′′(w − c)

u′′(w − c)

σ2
x

2

px(w − c) ≡ −u′′′(w−c)
u′′(w−c)

is defined as the Measure of Absolute Prudence, whereas ψ is termed

the precautionary premium. The higher px(w − c), the more agent will save (in absolute

terms), and, hence, the less agent will consume in the present (i.e. the lower c). px ↑⇒
ψ ↑⇒ βE[u′(w − c+ x)] ↑⇒ u′(c) ↑⇒ c ↓

Most of times, it will be assumed that dpx(w−c)
dw

< 0, i.e. the wealthier agent is the more

she will consume in the present.

3.4.2 Some Further Concepts

• Ross, 1981: uA is more risk–averse than uB if ∃λ :
u′′

A(y)

u′′
B(y)

≥ λ ≥ u′
A(y)

u′
B(y)

This measure is used to ascertain preferences over lotteries in cases where there are

background risks (i.e. risks for which there is no market).

• The Measure of Absolute Temperance (Gollier/Pratt, 1996; Kimball, 1992) The Mea-

sure of Absolute Temperance t(w) is defined as t(w) ≡ −u′′′′(w)
u′′′(w)

.

• Standard Risk Aversion (Kimball, 1993)

p′x(w) ≤ 0 or t(w) ≥ px(w)

A′(w) ≤ 0 or px(w) ≥ A(w)

etc. etc.
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4 Measures of Risk

4.1 Introduction

Thus far, we have been looking at ways to rank individuals with respect to their risk aversion.

In this chapter, we’ll endeavor to rank monetary lotteries with respect to their “riskiness”.

For, indeed, in this, it is not always good enough just to compare the variances of two

lotteries with the same expected value.

Example Let there be two Lotteries A and B, with A ∼ (7
8
, 1

8
; 1, 9) and B ∼ (1

2
, 1

2
; 0, 4).

E[A] = 2 = E[B]; V [A] = 7; V [B] = 4

Now, let agent’s utility be given by u(w) =
√
w.

EA[u] = 10
8
; EB[u] = 1 < 10

8

i.e. agent with utility u(w) =
√
w will prefer lottery A over lottery B, even though

E[A] = E[B] and V [A] > V [B].

As we have already seen in class, however, agent will only be interested in the expected

value and the variance of a distribution if she exhibits quadratic utility.

4.2 Stochastic Dominance

Stochastic Dominance is a concept that allows us to rank distributions as to their “riskiness”.

While satisfying the property of transitivity, this concept, however, is not complete, i.e. it

will never be possible to rank all distributions. We’ll first take a look at first–order stochastic

dominance (FOSD), by which we are able to give a preference ordering for all utility functions

u with u′ > 0 (4.2.2.), before turning to second–order stochastic dominance (SOSD), which

gives a preference ordering for all utility functions u with u′′ < 0 < u′ (4.2.3.). There are

concepts of higher–order stochastic dominance, which allow for the ranking of a vaster class

distributions, but which, in turn, require starker restrictions on utility function u.
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4.2.1 Refresher: Integration by Parts

Lemma 4.1 Let u(x) and v(x) be two continuously differentiable functions, with u : [a; b] −→
R, v : [a; b] −→ R, (a, b) ∈ R2. Then, the following equality will hold:∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx

Proof As we know from High School: (u(x)v(x))′ = u′(x)v(x) + u(x)v′(x) Since this holds

for all x ∈ [a; b], it follows that∫ b

a

(u(x)v(x))′ dx =

∫ b

a

u′(x)v(x) dx+

∫ b

a

u(x)v′(x) dx

⇐⇒
∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx

Q.E.D.

4.2.2 First–Order Stochstic Dominance (FOSD)

Let there be two distributions A and B, determined by their cumulative distribution functions

FA and FB, respectively. fA and fB denote the respective densities, which shall exist by

hypothesis (i.e. we suppose the CDFs to be continuously differentiable).

EB[u] ≥ EA[u] ⇐⇒
∫ b

a

u(x)fB(x) dx ≥
∫ b

a

u(x)fA(x) dx

⇐⇒
∫ b

a

u(x)[fB(x)− fA(x)] dx ≥ 0

⇐⇒ [u(x)(FB(x)− FA(x))]ba −
∫ b

a

u′(x)(FB(x)− FA(x)) dx ≥ 0

⇐⇒
∫ b

a

u′(x)(FA(x)− FB(x)) ≥ 0

For u′ > 0, this last inequality will always hold if ∀x ∈ [a; b] : FA(x) ≥ FB(x). This leads us

to the definition of First–Order Stochastic Dominance:

Definition Let FA(x) and FB(x) be two continuously differentiable cumulative distribution

functions. Then FB is said to first–order stochastically dominate FA iff

∀x ∈ R : FA(x) ≥ FB(x)

AND

∃x ∈ R : FA(x) > FB(x)
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The following theorem is immediately implied by the above:

Theorem 4.2 Risk–loving, risk–neutral, and risk–averse individuals with a positive marginal

utility in income prefer the first–order stochastically dominating distribution of income.

Corollary 4.3

FB(x) �FOSD FA(x) ⇒ EB[x] > EA[x]

Proof

Ei[x] =

∫ b

a

xfi(x) dx = [xFi(x)]
b
a −

∫ b

a

Fi(x) dx

= b−
∫ b

a

Fi(x) dx

EB(x)− EA(x) =

∫ b

a

FA(x)− FB(x) dx > 0 (on account of FOSD)

Q.E.D.

4.2.3 Second–Order Stochastic Dominance (SOSD)

Let there be two distributions A and B, determined by their cumulative distribution functions

FA and FB, respectively. fA and fB denote the respective densities, which shall exist by

hypothesis (i.e. we suppose the CDFs to be continuously differentiable).

EB[u] ≥ EA[u] ⇐⇒
∫ b

a

u(x)fB(x) dx ≥
∫ b

a

u(x)fA(x) dx

⇐⇒
∫ b

a

u(x)[fB(x)− fA(x)] dx ≥ 0

⇐⇒ [u(x)(FB(x)− FA(x))]ba −
∫ b

a

u′(x)(FB(x)− FA(x)) dx

⇐⇒
∫ b

a

u′(x)(FA(x)− FB(x)) ≥ 0

Define T ′(x) ≡ FB(x) − FA(x). It follows that T (x) =
∫ x

−∞ FB(u) − FA(u) du, and that

T (a) = 0. Continuing our calculations:∫ b

a

u′(x)(FA(x)− FB(x)) ≥ 0
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Figure 6: First–Order Stochastic Dominance

⇐⇒ [−u′(x)T (x)]ba +

∫ b

a

u′′(x)T (x) dx ≥ 0

⇐⇒ −u′(b)T (b) +

∫ b

a

u′′(x)T (x) dx ≥ 0

This inequality will always hold if ∀x ∈ [a; b] : T (x) ≥ 0. This leads us to the definition of

second–order stochastic dominance:

Definition Let FA(x) and FB(x) be two continuously differentiable cumulative distribution

functions. Then FB is said to second–order stochastically dominate FA iff

∀x ∈ [a; b] :

∫ b

a

FB(x) dx ≤
∫ b

a

FA(x) dx

The following theorem immediately follows from the above:
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Theorem 4.4 Risk–averse individuals with a positive marginal utility in income prefer the

second–order stochastically dominating distribution of income.

Please NOTE that whilst FOSD works for all individuals with positive marginal utility of

income, SOSD works ONLY for risk–averse individuals.

Also NOTE that the ordering of distributions given by FOSD and SOSD is NOT complete,

i.e. ALL possible income distributions CANNOT be ranked by FOSD or SOSD.

Figure 7: Second–Order Stochastic Dominance I

NOTE that the area above the cumulative distribution function (CDF) is equal to the

expected value of the distribution.

Proof

x̄ =

∫ b

a

xf(x) dx

28



Figure 8: First–Order Stochastic Dominance II

= [x(F (x)− 1)]ba −
∫ b

a

(F (x)− 1) dx

= a+

∫ b

a

(1− F (x)) dx

Q.E.D.

Definition FA(x) is said to be a mean–preserving spread (MPS) of FB(x) iff FB �SOSD FA

AND EA(x) = EB(x).

Definition A distribution A with a cumulative distribution function FA : SA −→ R is said

to be a strong increase in risk (Meyer & Ormiston) of another distribution B with cumulative

distribution function FB : SB −→ R iff
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Figure 9: Mean–Preserving Spread

(i) A is a mean–preserving spread of B AND

(ii) SA \ SB 6= ∅

4.3 The Rothschild–Stiglitz Theorem, 1970

Theorem 4.5 Let there be two lotteries over x ∈ [a; b], A and B, with EA(x) = EB(x).

The following statements are equivalent:

(a) Any and every risk–averse agent will prefer lottery B over lottery A

(b) ∀x ∈ [a; b] :
∫ x

a
(FB(u)− FA(u)) du ≥ 0
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Figure 10: Mean–Preserving Spread II

(c) A is a MPS of B

(d) A is equal to B but for addition of white noise

That (b) ⇒ (a) we have already seen above; we’ll not prove (a) ⇒ (b) here. (b) ⇐⇒ (c)

is true by the very definition of a MPS. Now, we shall prove (d) ⇒ (a):

Proof Let lottery A be defined over y ∈ [a; b], whilst lottery B is defined over x ∈ [a; b].

White noise ε: y = x+ ε, with E[ε | x] = 0

(α) Show that both distributions have the same mean

Ey[y] = Ex,ε[x+ ε] = Ex[Eε[(x+ ε) | x]] = Ex[x]
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Figure 11: Mean–Preserving Spread III

Q.E.D.

(β) Show that any risk–averse individual would prefer B over A

Ey[u(y)] = Ex,ε[u(x+ ε)]

= Ex[Eε[u(x+ ε) | x]]

< Ex[u(x+ Eε[ε | x])] (Jensen)

= Ex[u(x)]

Q.E.D.
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Figure 12: Strong Increase in Risk

Economics of Information and Uncertainty
Summer Term 2006

5 Applications

5.1 Optimum Portfolio Selection

5.1.1 The Basic Problem

Agent can invest her initial wealth w0 either buying a riskless asset that pays out (1 + i)

with certainty or purchasing a risky asset with payout (1 + x̃) (where µ ≡ E[x̃]). Let m

33



denote the amount invested in the risk–free asset and a the sum invested in the risky asset.

Thus, final wealth w̃ is given by w̃ = m(1 + i) + a(1 + x̃).

max
a,m

E[u(m(1 + i) + a(1 + x̃))] s.t. m+ a ≤ w0

Since the constraint binds, this is tantamount to:

max
a
E[u(w0(1 + i) + a(x̃− i)]

FOC:
∂Eu

∂a
= E[u′(w0(1 + i) + a(x̃− i))(x̃− i)] =! 0

SOC:
∂2Eu

∂a2
= E[u′′(.)(x̃− i)2] < 0

SOC is fulfilled for risk–averse agents (i.e. for u′′ < 0).

∂Eu

∂a
|a=0 = E[u′(w0(1 + i))(x̃− i)]

= u′(w0(1 + i))E[x̃− i]

= u′(w0(1 + i))(µ− i)

IMPORTANT RESULT:

Since u′ > 0, it follows that a∗ > 0 ⇐⇒ µ > i and a∗ < 0 ⇐⇒ µ < i, i.e. ANY RISK-

AVERSE AGENT WILL (TO SOME DEGREE) PARTAKE IN A RISKY PROJECT IF

THE EXPECTED RETURN FROM DOING SO IS STRICTLY POSITIVE. Recall from

Chapter 2 that, at the certainty level, risk–costs are second–order.

We shall now turn to comparative static analysis. First, though, as a refresher, we’ll briefly

recall the Implicit Function Theorem.

5.1.2 Refresher: Implicit Function Theorem (IFT)

Theorem 5.1 Let f(x, y) be a continuously differentiable function with f(x, y) = 0 and
∂f
∂x
|x,y 6= 0. Then, the following equality will hold:

dx

dy
= −

∂f(x,y)
∂y

∂f(x,y)
∂x
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5.1.3 Comparative Statics: The Effect of a Change in w0

Define M ≡ ∂Eu
∂a

= E[u′(w0(1 + i) + a(x̃− i))(x̃− i)] =! 0 (FOC). From the IFT, we know:

da∗

dw0

= −
∂M
∂w0

∂M
∂a

Since the SOC holds, we know that ∂M
∂a

< 0. Hence, it follows that sgn[ ∂a∗

∂w0
] = sgn[ ∂M

∂w0
].

∂M

∂w0

= E[u′′(w0(1 + i) + a(x̃− i))(x̃− i)](1 + i)

Since u′′ < 0, it can easily be seen that sgn[ ∂M
∂w0

] = −sgn[x̃− i].

Now recall that A(y) = −u′′(y)
u′(y)

⇐⇒ −u′′(y) = A(y)u′(y). Furthermore, define yf ≡
w0(1 + i) + a(x̃− i).

⇒ ∂M

∂w0

= E[−A(yf )u
′(yf )(x̃− i)](1 + i)

Recall the FOC: E[u′(yf )(x̃ − i)] =! 0. So, for CARA, i.e. for A(yf ) = const∀yf ,
∂M
∂w0

= 0.

Thus, for CARA utility, initial wealth has no effect whatever on the amount actually invested

in a risky project. Now, define f : x̃ 7→ A(yf )u
′(yf )(x̃− i), and consider the following figure:

From the FOC, we know that, for CARA, the area delimited by the graph of f(x̃) which

is to the left of x̃ = i (area B) is equal to the area delimited by the graph of f(x̃) which

is to the right of x̃ = i (area C). For DARA, however, A(yf ) decreases with x̃, so we get

the orange–colored graph. As can easily be seen, the area delimited by the orange–colored

graph situated to the left of x̃ = i is larger than area B whereas that situated to the right

of x̃ = i is smaller than area C. It follows that, for DARA,
∫ +∞
−∞ f(x̃) < 0, and, hence,

∂M
∂w0

> 0 ⇒ da∗

dw0
> 0, i.e.: For DARA utility, the amount invested in a risky project increases

in agent’s initial wealth; risky projects are superior goods.

Applying analogous logic to the case of IARA, we get:
∫ +∞
−∞ f(x̃) > 0, and, hence, ∂M

∂w0
<

0 ⇒ da∗

dw0
< 0, i.e.: For IARA utility, the amount invested in a risky project decreases in

agent’s initial wealth; risky projects are inferior goods.

5.1.4 Comparative Statics II: The Effect of a Change in i

∂M

∂i
= E[−u′(yf ) + u′′(yf )(w0 − a∗)(x̃− i)]

⇒ da∗

di
= −

∂M
∂i

∂M
∂a

= −E[−u′(yf )]
∂M
∂a

− (w0 − a∗)
E[u′′(yf )(x̃− i)]

∂M
∂a
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Figure 13: The Impact of Agent’s Initial Endowment w0 on the Demand for Risky Invest-

ments

⇐⇒ da∗

di
=
E[u′(yf )]

∂M
∂a

+
w0 − a∗

1 + i

da∗

dw0

This last equality amounts to a Slutsky—Equation, where the first term, always negative,

gives the substitution effect, whereas the second term, the sign of which is ambiguous,

measures the wealth/income effect. E.g.: If da∗

dw0
> 0 (DARA) and (w0 − a∗) < 0, then

da∗

di
< 0. Intuition: (w0 − a∗) < 0 means agent is selling the riskless investment; rising i

implies agent is getting poorer; because of DARA, agent will become more risk–averse, and,

hence, will be buying less of the risky investment.
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5.1.5 Comparative Statics III: Increase in Risk Intensity

Let there be two risky assets, x̃ and ỹ, distributed according to density functions f(s) and

g(s), respectively, where s is a realization of x̃ or ỹ, respectively. Suppose furthermore

that
∫ B

A
sf(s) ds =

∫ B

A
sg(s) ds (i.e. equality of mean), and that ∀x ∈ [A;B] :

∫ x

A
[G(s) −

F (s)] ds ≥ 0 (i.e. F �SOSD G).

Now, define a∗ so that the FOC hold for density f :∫ B

A

u′(w0(1 + i) + a∗(s− i))(s− i)f(s) ds = 0

Since distribution g is, as it were, “riskier” (on account of SOSD), we should expect that:∫ B

A

u′(w0(1 + i) + a∗(s− i))(s− i)g(s) ds < 0

i.e. that risk–averse agent will invest less if and when the project gets riskier. Combining

the two equations from above, that is the case iff∫ B

A

u′(w0(1 + i) + a∗(s− i))(s− i)[g(s)− f(s)] ds < 0

Now, define v(s) ≡ u′(w0(1 + i) + a∗(s − i))(s − i). Now, recall the Rothschild–Stiglitz

theorem (1970) from Chapter 4: The equality above will hold iff v is a utility function for a

risk–averse agent, i.e. iff v is concave in s. So let us check just that:

d

ds
[u′(w0(1 + i) + a∗(s− i))(s− i)] = u′′(.)(s− i)a∗ + u′(.)

d2

ds2
[u′(w0(1 + i) + a∗(s− i))(s− i)] = 2u′′(.)a∗ + u′′′(.)(s− i)(a∗)2

If we rule out strictly negative a∗, we know that 2u′′(.)a∗ ≤ 0. However, sgn[u′′′(.)(s −
i)(a∗)2] =??.

Hence, the change, as well its sign, in the amount risk–averse agent will invest in a risky

project if risk becomes more intense (without there being a change in expected value), is

ambiguous.

The appertainig literature has developed a plethora of reactions to this surprising result,

such as e.g.

1. It is a good thing our theory should allow for such ambiguities (as with Giffen goods).

Indeed, the more ambiguous a theory is, the more empirical data can be fitted into its
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framework. Intuitively: If a project becomes more risky, risk–averse agent, shunning

risk, will switch out of the risky asset (substitution effect). However, supposing the

risky project pays out more in expectation than the riskless asset (which, as we recall,

is both necessary and sufficient for any risk–averse agent at all to partake in the risky

project), switching out of the risky project makes agent poorer. Thus, there could be

an income effect, which might work in the opposite direction.

2. Impose restrictions on the utility function: If a∗ > 0, and the Pratt–Arrow–measure

of partial risk–aversion is lower than 1 and increasing in s, then risk–averse agent will

invest less in a risky project as risk becomes more intense.

Rp = −w1
u′′(w0 + w1)

u′(w0 + w1)
= −(s− i)a∗

u′′(yf )

u′(yf )

∂Rp

∂s
= −a∗u

′′

u′
− (s− i)(a∗)2u

′u′′′ − (u′′)2

(u′)2

= − 1

u′
[a∗u′′(1 +Rp) + (s− i)(a∗)2u′′′] > 0

Recall that if 2a∗u′′ + (s − i)u′′′(a∗)2 <! 0, there is no ambiguity. From the above,

we know that a∗u′′(1 + Rp) + (s − i)(a∗)2u′′′ < 0. Since u′′ < 0 and Rp < 1, it

follows that 2a∗u′′ + (s− i)u′′′(a∗)2 < 0 holds. Note that whereas the hypothesis that
∂Rp

∂w1
> 0 seems quite justifiable, the supposition that Rp < 1 is empirically dubious, as

empirically Rp ∈ [2; 3].

3. Restrictions imposed on the definition of what constitutes an increase in risk

• Strong increase in risk (Meyer & Ormiston, 1985)

• µ—σ—approach: For DARA, CARA, and “small” IARA, agent will be investing

less in a risky project if its risk, as measured by the variance of the distribution,

increases (with expected value remaining equal); cf. Sinn, 1990.

4. Market equilibrium (Gollier & Schlesinger, 1997) One could expect the price of an asset

to fall if the risk associated with it increases. However, this is only the case if another

integral condition holds.

5.1.6 Comparative Statics IV: Increase in Risk Aversion

Recall the Pratt theorem from Chapter 3: uII is more risk–averse than uI iff ∃G : uII =

G(uI) ∧G concave. The FOC for uI is given by:

E[u′I(w0(1 + i) + a∗(x̃− i))(x̃− i)] =! 0
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Now, for uII :∫ i

A

G′(uI(.))u
′
I(w0(1 + i) + a∗(s− i))(s− i)f(s) ds+

∫ B

i

G′(uI(.))u
′
I(.)(s− i)f(s) ds

Note that the first term of the sum is negative, whereas the second term is positive. In

addition, since G′′ < 0:

G′(uI(w0(1+i)+a
∗(s−i))) (for s > i) < G′(ui(w0(1+i))) < G′(uI(w0(1+i)+a

∗(s−i))) (for s < i)

Hence, it follows that the sum of both terms is negative.

Thus: If agent gets more risk–averse she will invest less in risky projects.

5.2 The Demand for Insurance

Let w0 be agent’s initial wealth and u her utility function. With probability π, she suffers a

loss of L. She can buy cover C at a premium rate of p. Thus, the premium she has to pay
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amounts to pC. Thus, with no loss occuring, her final wealth will be w1 ≡ w0 − pC, whilst,

if a loss occurs, final wealth will amount to w2 ≡ w0 − L+ (1− p)C.

⇒ max
C

(1− π)u(w0 − pC) + πu(w0 − L+ (1− p)C)

FOC: − p(1− π)u′(w0 − pC) + π(1− p)u′(w0 − L+ (1− p)C) =! 0

⇐⇒ (1− π)u′(w0 − pC)

πu′(w0 − L+ (1− p)C)

⇐⇒ u′(w1)

u′(w2)
=

1− p

1− π

π

p

Figure 14: The Demand for Insurance

u′(w1)

u′(w2)
=

1− p

1− π

π

p


< 1 if p > π ⇒ w1 > w2 ⇐⇒ C < L;

= 1 if p = π ⇒ w1 = w2 ⇐⇒ C = L;

> 1 if p < π ⇒ w1 < w2 ⇐⇒ C > L.
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The insurance premium p is said to be “fair” if the insurance company makes 0 profits in

expectation, i.e. if E[G] = pC − πC = C(p− π) =! 0 ⇐⇒ p = π.

Thus, any risk—averse agent who is offered insurance at a fair premium will buy full

insurance. Note that this outcome is efficient since we have assumed the company to be

risk—neutral and agent to be risk—averse.

5.3 Firms under Uncertainty

5.3.1 Introduction

For reasons of risk–spreading and risk–sharing, firms will usually be modeled as being risk–

neutral agents. However, reasons why firms may be considered risk–averse are no less abun-

dant:

• Agency Problems Within the Firm: As we know from the micro course, incentive pay

will sometimes have to be used to overcome Moral Hazard in the owner—manager—

relationship, i.e. the manager’s pay will be made dependent on the firm’s performance.

This may in turn lead to a situation where, instead of maximizing the risk–neutral

owners’ expected return, risk–averse managers will maximize their own utility. Thus,

as a result, the firm will behave like a risk–averse entity.

• Bankruptcy Costs: The threat of bankruptcy may lead to non–linearities in the pay–off

schedule. This may be due to the loss of firm–specific human capital or to the loss of

the customer base.

• Convex Tax Schedules: If the marginal tax rate is increasing, higher profit realizations

become less valuable.

The uncertainty firms face may appertain either to production decisions or to investment

choices.

5.3.2 Production Decisions

The uncertainty in production decisions may pertain either to market conditions (input

factor prices or selling prices) or to technology (i.e. there is a stochastic element to the

physical amount of output that is generated).
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Figure 15: Bankruptcy Costs

a) Price Uncertainty

Let w0 be the firm’s initial wealth, a the amount of output produced, c(a) the cost of

producing output a, and p̃ the (uncertain) selling price. Then, owner’s final wealth w̃f is

given by w̃f = w0 + p̃a − c(a). The risk–averse decision–maker (owner or manager) will

maximize u(w̃f ).

FOC:
dE[u(w̃f )]

da
= E[u′(w0 + p̃a− c(a))(p̃− c′(a))] =! 0

Recall that

Cov(x̃, ỹ) = E[x̃ỹ]− E[x̃]E[ỹ] ⇐⇒ E[x̃ỹ] = Cov(x̃, ỹ) + E[x̃]E[ỹ]

Hence, the FOC is equivalent to:

Cov(u′(.), (p̃− c′(a))) + E[u′(.)]E[p̃− c′(a)] =! 0
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Figure 16: Convex Tax Schedule

Note that c′(a) is not a random variable. Therefore, the FOC reduces to

Cov(u′(.), p̃) + E[u′(.)](E[p̃]− c′(a)) =! 0

⇐⇒ E[p̃] = c′(a)− Cov(u′(.), p̃)

E[u′(.)]

If the firm were risk–neutral this optimality condition would reduce to E[p̃] = c′(a), since

risk–neutral (linear) u implies u′ = const⇒ Cov(u′(.), p̃) = 0.

Note that if p̃ is high, final wealth w̃f is high, too, implying low u′(w̃f ). Thus, sgn{Cov(u′(.), p̃)} =

−1, implying −Cov(u′(.),p̃)
E[u′(.)]

> 0. One may think of −Cov(u′(.),p̃)
E[u′(.)]

as some kind of additional “psy-

chological” marginal cost.

In conclusion, risk–aversion will reduce agent’s willingness to produce given expected prices.
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Comparative static analysis yields results that are perfectly analogous to those we had

been discussing under the header of optimum portfolio selection. Be aware that in the

case of fixed costs, i.e. of c(a) = c0 + c1(a), an increase in fixed costs is tantamount to a

decrease in agent’s initial wealth. Thus, e.g. producers exhibiting DARA—utility will reduce

production if fixed costs increase. It can also be shown that psychological marginal costs

will be increasing if fixed costs are increasing, i.e. d
dc0

[−Cov(u′(.),p̃)
E[u′(.)]

] ≥ 0.

b) Technological Uncertainty

One can distinguish two forms of technological uncertainty: additive and multiplicative.

α) Additive Uncertainty

w̃f = w0 + p(a+ ε̃)− c(a)

max
a
E[u(w̃f )]

⇒ FOC:
d

da
[E[u(w̃f )] = E[u′(w̃f )(p− c′(a)) =! 0

⇐⇒ p = c′(a) (indeed u′(w̃f ) > 0∀w̃f )

The choice of a does not have any impact on the uncertainty pε̃. Hence, a will be chosen as

though there were no uncertainty.

β) Multiplicative Uncertainty

w̃f = w0 + p[a(1 + ε̃)]− c(a)

= w0 + p(1 + ε̃)a− c(a)

= w0 + p̃a− c(a) with p̃ ≡ p(1 + ε̃)

Thus, from a formal point of view, this problem is perfectly analogous to the problem of

price uncertainty: same problem, same results!

Note that, in contrast to additive uncertainty, here the choice of a has an impact on the

intensity of the uncertainty faced. Indeed, if initially chosen a is low, the effect of the shock

ε̃ is weak. Conversely, if initially chosen a is high, the effect of the shock ε̃ is strong.

5.3.3 Investment Decisions

Let there be one (irreversible) investment project, which is engendering one-time costs of I.

Its payoff π̃(t), t = 1, · · · we’ll suppose to be uncertain.
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Orthodox theory would propose the following decision rule: Invest iff NPV3 ≥ 0,

⇐⇒ E[
T∑

t=1

δtπ̃(t)]− I ≥ 0

where δ ≡ 1
1+r

is the discount factor and r the (real) interest rate.4

However, it can be argued that our theory should be mindful of whether an investment

project could be delayed, canceled, or interrupted. Indeed, this consideration will lead us to

the Real Option Theory of Investment. It is so named because it considers the possibility of

agent’s doing something “real”, such as waiting, for instance.

Example • I = 1600 $

• r = 10%

• In t = 0, the project will certainly yield a payoff of 200 $

• In t ∈ [1; +∞], the project will with equal probability yield a payoff of either 100 $ or

300 $

NPV = E[
∞∑

t=0

δtπ̃(t)]− I

= 200 +
∞∑

t=1

δt 300 + 100

2
− I =

∞∑
t=0

200

(1, 1)t
− 1600

=
200

1− 1
1,1

− 1600 = 600 > 0

Thus, using the NPV—criterion, the project ought to be engaged in. But, what if agent

waited till tomorrow (t = 1)?

If π(t = 1) = 100 ⇒ NPV (t = 1) = 1100 − 1600 < 0. Thus, in this case, the project

should be refrained from.

If π(t = 1) = 300 ⇒ NPV (t = 1) = 3300−1600 > 0. Thus, in this latter case, the project

should be commenced.

3Net Present Value
4As we know from Macro, investment decisions are dependent on the real interest rate, wheras portfolio

decisions depend on nominal interest
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Now, how would the following project be valued: Wait for 1 period; invest iff π(t = 1) =

300?

NPV (t = 0) =
1

2
· 0 +

1

2
· NPV (t = 1)

1, 1
=

1

2
· 1700

1, 1
= 773

Remember that the project where agent had to make a decision in t = 0 had a NPV (t =

0) = 600. Hence, the flexibility option F is valued at F = 173$ . With flexibility, there are

indeed three effects:

• Agent will lose 200$ in t = 0

• Agent will gain I(1 − δ), since investment costs become due one period later. Hence,

I ↑⇒ F ↑

• Agent will get 300$ instead of 300+100
2

(in expectation), since she need no longer bear

the uncertainty

Note that in our example p0 = 200 $ and p1 = 1, 5p0 or p1 = 0, 5p0 with equal probability.

For p0 < 97 it is optimal never to invest, whereas for p0 > 249 it is optimal to invest as soon

as t = 0. For 97 < p0 < 249, it is optimal to wait and invest only if p1 = 1, 5p0.

With a mean—preserving spread (such as e.g. {100; 300} 7→ {50; 350}), F ↑, since p1 =

100 and p1 = 50 are both equivalent as both lead to NPV (t = 1) = 0, as no investment will

take place.

Note that in this context waiting is perfectly equivalent to buying a signal. In our setup,

agent buys the signal by foregoing a certain profit of 200$ in t = 0. As we shall see in greater

detail in a later chapter, a rational decision maker should never seek costly information

unless there is a chance that information may actually change what she is going to do.

Real Option Theory can be used to analyze a plethora of situations:

• Interest Rates: The theory would suggest that uncertainty had more of an impact on

investment decisions than the current interest rate.

• Labor Markets: Hiring & firing costs are analogous to investment or cancelation costs.

Our theory would thus predict that a high measure of uncertainty led to a decline in

new job offers.

• Hysteresis effects, e.g. uncertainty relating to currency exchange rates For instance,

from 1980–1984, the U.S. dollar rose, as did U.S. imports. From 1984–1987, the dollar

again fell to 1980 levels, yet imports hardly budged.
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• Oil Reserves

• Product Development (e.g. electric cars)

• R & D

• Marriage

• Suicide

• Changes in the Law
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6 Allocation of Risk

6.1 Efficient Risk Allocation

Let there be a simple exchange economy with two individuals (1 and 2) and two possible

states of the world (a and b) that realize with probabilities p and 1 − p, respectively. Let

furthermore individual j’s initial endowment in state i be denoted by w0j(i), and her final

wealth (i.e.after trade) in state i by wfj(i). Individual j’s utility is assumed to be given by

the at least twice differentiable function uj, with u′j > 0 > u′′j .

Social planner’s problem:

max
wf1(a),wf1(b),wf2(a),wf2(b)

pu1(wf1(a)) + (1− p)u1(wf1(b)) s.t.

pu2(wf2(a)) + (1− p)u2(wf2(b)) ≥ pu2(w02(a)) + (1− p)u2(w02(b)) ≡ ū

wf1(a) + wf2(a) ≤ w01(a) + w02(a) ≡ w0(a)

wf1(b) + wf2(b) ≤ w0(b)

⇐⇒ max
wf2(a),wf2(b)

pu1(w0(a)− wf2(a)) + (1− p)u1(w0(b)− wf2(b)) s.t.

pu2(wf2(a)) + (1− p)u2(wf2(b)) ≥ ū

Langrangian maximization yields:

FOC:
pu′1(a)

(1− p)u′1(b)
=

pu′2(a)

(1− p)u′2(b)

(The SOC holds because of risk aversion (u′′ < 0).)

This result holds in the general case and is commonly referred to as the Borch Condition:

An allocation of risk is Pareto–efficient iff, in all possible states of the world, the marginal

rate of substitution of income in state s and income in state t is equalized over all individuals:

∀i, j, s, t :
psu

′
i(wfi(s))

ptui(wfi(t))
=
psu

′
j(wfj(s))

ptu′j(wfj(t))

With risk being allocated optimally, both parties will bear some risk if
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Figure 17: A simple echange economy with social risk

• there is social risk AND

• both parties are risk–averse

Suppose individual 2 is risk–neutral (implying that u′2 = const). Then, the Borch Condi-

tion simplifies to:
pu′1(a)

(1− p)u′1(b)
=

pu′2(a)

(1− p)u′2(b)
=

p

1− p

Since 1 is still risk–averse, u′1(a) = u′1(b) ⇒ wf1(a) = wf1(b). Hence, the risk–neutral agent

will fully insure the risk–averse agent, which intuitively makes great sense since the social

planner’s goal is to minimize the risk costs agents suffer and risk–neutral agents do not bear

any costs from having to shoulder risk.

Theorem 6.1 The Reciprocity Principle: In any Pareto–efficient risk allocation, an indi-

vidual’s final wealth is dependent ONLY on society’s total wealth in the respective state of
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Figure 18: A simple exchange economy with no social risk

the world.

wfj(i) = Fj(w0(i))

Proof It has to be proved that w0(s) = w0(t) ⇒ wfj(s) = wfj(t)∀j.

Suppose w0(s) = w0(t), but ∃j s.t. wfj(s) > wfj(t) ⇐⇒ u′[wfj(s)] < u′[wfj(t)] (*), due

to risk–aversion (u′′ < 0).

However, in a Pareto–efficient equilibrium, the Borch Condition will apply:

psu
′
j[wfj(s)]

ptu′j[wfj(t)]
=
psu

′
k[wfk(s)]

ptu′k[wfk(t)]

From (*), it follows that LHS < 1 ⇒ RHS < 1 ⇒ u′k[wfk(s)] < u′k[wfk(t)] ⇐⇒ wfk(s) >

wfk(t) due to risk–aversion.

Thus, in a Pareto–efficient equilibrium, it must be the case that wfj(s) > wfj(t) implies
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wfk(s) > wfk(t), and, summing over all the individuals

w0(s) =
∑

q

wfq(s) >
∑

q

wfq(t) = w0(t)

which contradicts our assumption that w0(s) = w0(t) and thus completes the proof.

The Reciprocity Principle immediately implies that if there is no social risk, all individuals

are fully insured.

Now, let us examine the question of who will optimally bear what proportion of the social

risk, i.e. of how Fj(w0(i)) will change in w0(i). Suppose there are two individuals with

u′1(F1(w0)) = λu′2(F2(w0)) (*). Total differentiation and division by dw0 yields:

u′′1(F1(w0))F
′
1(w0) = λu′′2(F2(w0))F

′
2(w0) (**)

(**)/(*) ⇒ F ′
1(w0)

u′′1(.)

u′1(.)
= F ′

2(w0)
u′′2(.)

u′2(.)

Remember the Pratt–Arrow–coefficient of absolute risk aversion A(y) ≡ −u′′(y)
u′(y)

⇐⇒ A1(F1(w0))F
′
1(w0) = A2(F2(w0))F

′
2(w0)

Since there are only two individuals in this economy, F ′
1(w0) + F ′

2(w0) = dw0

dw0
= 1

⇒ A1F
′
1 = A2(1− F ′

1)

⇒ F ′
1(w0) =

A2

A1 + A2

=
A−1

1

A−1
1 + A−1

2

=
T1(wf1)

T1(wf1) + T2(wf2)

with Tj ≡ A−1
j denoting the individual j’s coefficient of risk tolerance. In general:

dwfj

dw0

=
Tj(wfj)∑n
q=1 Tq(wfq)

Thus, in Pareto-optimum, the larger an individual’s share of society’s total risk tolerance the

stronger the impact of a change in society’s total wealth on that individual’s final endowment.

Note that if there is no social risk, w0 is constant by definition.

Suppose individual 2 were risk–neutral. Then A2 = 0 ⇒ T2 = ∞ ⇒ dwf1

dw0
= T1

T1+T2
= 0,

meaning that individual 1 is fully insured. If in an economy, one individual is risk–neutral,

that individual optimally takes on all of the social risk, thus fully insuring all the other

individuals in the society.
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If all individuals in an economy exhibit CARA—utility, Aj = constj∀j, it would follow

that
dwfj

dw0
= const, implying a linear sharing rule: wfj(w0) = aj + bjw0.

It is routine to verify that quadratic utility of the form uj(wfj) = wfj −βjw
2
fj also implies

a linear sharing rule.

Generically, though, optimal sharing rules will be non—linear.

6.2 How and When can Efficiency in Risk Allocation Be Achieved?

6.2.1 Arrow Securities

An Arrow Security as for state of the world s is defined as a security that pays out unity in

state of the world s and 0 in all other states of the world. Let qs denote the market price of

one Arrow Security for state s. If we assume competitive markets and there is no discounting

of future payments, arbitrage will lead to
∑

s qs = 1. Let xfj(s) denote individual j’s final

wealth in state of the world s, which results from her initial endowment as well as from

trading with Arrow Securities.

Individuals will maximize ∑
s

psu(xfj(s)) s.t.

∑
s

qs(xfj(s)− x0j(s)) ≤ 0

FOC for state s: psu
′(xfj(s))− λjqs =! 0

FOC for state t: ptu
′(xfj(t))− λjqt =! 0

Dividing both FOCs yields:
psu

′(xfj(s))

ptu′(xfj(t))
=
qs
qt

Thus, in words, the market will lead to a result where MRS=price ratio. By our assumption

of competitive markets, the Law of One Price is implied, meaning that this price ratio will

be the same for all market participants. Thus, in equilibrium, marginal rates of substitution

will equalize and the Borch Condition will hold. Thus, with complete markets for Arrow

Securities, the market will replicate the benevolent social planner’s solution.

The price vector q is given by the market clearing conditions (MCC):

∀s :
∑

j

(xfj(s)− x0j(s)) ≤ 0
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If there is but a single risk—neutral individual in the market, prices will be fair, meaning

∀s : qs = ps.

If there are several goods, we can analyze “contingent claims”. Let qes denote the price of

good e in state s.

max
∑

s

psu(x
1
fj(s), x

2
fj(s), · · ·) s.t.

∑
s

∑
e

qes(x
e
fj(s)− xe

0j(s)) ≤ 0

⇒ psu1(...)− λjq1s =! 0 etc.

The same result can be achieved if there are only Arrow Securities and goods are exchanged

only after the relevant state of the world has realized, provided individuals know the prices

of the goods when the Arrow Securities are traded.

Production Decisions

Let fej(a, s) denote firm j’s output of good e in state of the world s resulting from invest-

ment a.

max
a
πj(a) =

∑
s

∑
e

qesfej(a, s)− a

Note that there is no uncertainty about the firm’s profit since state—contingent goods are

traded today, i.e. before the state of the world realizes. Since there is no uncertainty, all the

shareholders would choose the same a; investment decisions are made by unanimous consent

of all the firm’s shareholders. All trades are done today; under the assumptions from above,

we thus get rid of all idiosyncratic risks.

Conclusion:

Complete markets with Arrow Securities lead to a Pareto—efficient allocation of risk ; i.e.

the 1st Main Theorem of Welfare Economics holds.

6.2.2 Real—World—Securities

Real—world markets for Arrow Securities can be found in many places, as e.g. insurance

markets, equity markets...

Consider a security (e.g. a stock) j of price Pj, and let πjs denote the stock j’s payoff in

state s. We know that, because of arbitrage, the stock should cost just as much as it would
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cost to replicate the stock’s payoff vector with Arrow Securities, thus

Pj =
∑

s

qsπjs

Thus, if P is the matrix of all available securities j ∈ {1, · · · , J} and q the price vector of

(hypothetical) Arrow Securities for all possible states of the world s ∈ {1, · · · , S}, and π the

J × S—dimensional matrix of all πjs

P = πq ⇒ q = π−1P

This tells us that a full market with Arrow Securities can be replicated iff matrix π is

invertible, which is the case if the number of linearly independent assets is equal to the

number of possible states of the world. Hence, markets will lead to an efficient risk allocation

if there are enough linearly independent assets.

6.2.3 Incomplete Markets

Suppose there are two states of the world s1 and s2 but only one asset b1 that pays out 3 if

s = s1 and 1 if s = s2. Let λj denote the share individual j holds in the firm b1.

E[uj] = pu(wfj(s1)) + (1− p)u(wfj(s2)) s.t.

wfj(s1) = w0j(s1) + λj · 3

wfj(s2) = w0j(s2) + λj · 1

It is routine to verify that generically MRS will not equalize across individuals. Thus,

efficient risk allocation will generically not be achieved. But is there a way to make the

market complete? Consider a call option o1 with a strike price of 2. Its payoff will thus be

1 in s1 and 0 in s2. Thus o1 and b1 are linearly independent and therefore they constitute a

complete market, there being only two possible states of the world in this economy.
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7 The Demand for Information

7.1 Some Notation

Let z1, z2, z3, · · · denote the states of the world that realize with an ex ante—probability of

w1, w2, w3, · · ·, respectively, with
∑

iwi = 1. Let there be a system of signals s1, s2, s3, · · ·,
with πk denoting the probability signal sk will realize. Furthermore, let wik denote the ex

post—probability of state zi conditional on signal sk having realized. Again,
∑

iwik = 1.

• Now let pik ≡ Pr[zi ∧ sk] denote the common probability of state zi and signal sk.

Then,
∑

i pik = πk and
∑

k pik = wi.

• Let qik ≡ Pr[sk | zi] = pik

wi
denote the conditional probability of signal sk given state zi.

• We have already defined wik ≡ Pr[zi | sk] = pik

πk
, the ex post—probability of state zi

given signal sk.

7.2 Recap: Bayes’s Rule

Remember the definition of conditional probabilities:

Pr[A | B] =
Pr[A ∧B]

Pr[B]

where (A;B) ⊂ Ω2 is a pair of events and Ω is the set of all possible events. From the above

equation it follows immediately that

Pr[B | A] =
Pr[B ∧ A]

Pr[A]

Define A ≡ Ω \ A, and, analogously B ≡ Ω \B.

Pr[A] = Pr[A ∧B] + Pr[A ∧B]

= Pr[A | B]Pr[B] + Pr[A | B]Pr[B]

From these considerations, Bayes’s Rule immediately follows:

Pr[B | A] =
Pr[A | B]Pr[B]

Pr[A | B]Pr[B] + Pr[A | B]Pr[B]
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7.3 The Value of a Signal System

7.3.1 Action is Chosen Before Receipt of Signal

Suppose agent must choose an action before receiving a signal. Let her choose a∗, leading

to payoffs x1, x2, x3, · · · in the states z1, z2, z3, · · ·. Without a signal, expected utility is given

by

E[u] =
∑

i

wiu(xi)

With the benefit of the signal, expected utility is

E[u] =
∑

k

πk ·
∑

i

wiku(xi)

=
∑

k

∑
i

πkwiku(xi)

=
∑

k

∑
i

πk
pik

πk

u(xi)

=
∑

i

wiu(xi)(
∑

k pik = wi)

which, as we have computed above, is equal to the expected utility without a signal.

Thus, as should hardly be surprising, a signal received after the choice of action is worth-

less.

7.3.2 Action is Chosen After Receipt of Signal

Let xli denote the payoff resulting from action al if state zi realizes.

Agent’s problem without her having the benefit of a signal:

max
al

∑
i

wiu(xli)

Without loss of generality, let us assume action a∗ = a1 maximized agent’s expected utility.

Agent’s problem after having received a signal sk:

max
al

∑
i

wiku(xli)

Quite possibly, a∗k 6= a∗, i.e. agent’s optimal action conditional on her having received signal

sk may differ from her optimal action if there is no signal.
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Note that, from Bayes’s Rule, wi =
∑

k pik =
∑

k πkwik.

Let V denote the value of the signal system in utility terms:

V = [
∑

k

πk[
∑

i

wiku(xk∗i)−
∑

i

wiku(x1i)]] ≥ 0

If, for all sk, a
∗
k = a∗, then V = 0; otherwise V > 0. As would seem obvious, a signal’s value

is strictly positive iff it leads to a change of action.

Now, let G∗ denote the monetary value of the signal system. G∗ is implicitly given by∑
k

∑
i

wiku(xk∗i −G∗) =
∑

i

wiu(x1i)

i.e. agent is indifferent between not having the signal system and having the signal system

but having to pay G∗.

Example Let there be a risk–neutral oil company interested in acquiring land for drilling.

With equal probability there is oil or there is none. If the company does not drill, its certain

payoff will be 0. If it chooses to drill and strikes oil, its payoff is 3. If it drills and does not

strike oil its payoff is -1,5.

Expected profit if there is no signal: 1
2
· (−1, 5) + 1

2
· 3 > 0, so the company should get

drilling.

Now, suppose the company could test–drill for oil.

z1 (no oil) z2 (oil) ..

s1 (signal bad) 0,3 0,1 π1 = 0, 4

s2 (signal good) 0,2 0,4 π2 = 0, 6
1
2

1
2

From this we can easily compute the ex post—probabilities by using Bayes’s Rule:

z1 (no oil) z2 (oil) ..

s1 (signal bad) 0,75 0,25

s2 (signal good) 0,33 0,67

If the signal it receives is s1, the expected revenue from drilling is equal to 3
4
·(−1, 5)+ 1

4
·3 <

0. So it is optimal not to drill then.

If, by contrast, it were to receive the signal s2, expected revenue from drilling would

amount to 1
3
· (−1, 5) + 2

3
· 3 > 0. Thus, drilling would now be optimal.
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Hence V is given by

V = 0, 4(0− [
3

4
· (−1, 5) +

1

4
· 3]) + 0, 6 · 0 = 0, 15

7.4 Blackwell Garbling

Let there be two signal systems S1 and S2, with Sr being defined by the realization of signals

sr
1, s

r
2, · · ·, occurring with probability πr

1, π
r
2, · · · respectively. Signal system Sr thus leads to

ex post—probabilities wr
ik.

Definition A signal system (an informational structure) S1 is said to be more valuable than

informational structure S2 iff the following condition holds for all individuals:∑
k

π1
k

∑
i

w1
iku(xk∗

1 i) ≥
∑

k

π2
k

∑
i

w2
iku(xk∗

2 i)

Theorem 7.1 S1 is more valuable than S2 iff there exist nonnegative numbers βk′k such that

the following two conditions hold

∀k′ : q2
ik′ =

∑
k

βk′kq
1
ik

∀k :
∑
k′

βk′k = 1

where qik = Pr[sk | zi].

This theorem harks back to Blackwell (1951). Its proof being rather involved, we shall skip

it here. Intuition, by contrast, is quite simple: What the theorem says is basically that

S2 = S1+ white noise, meaning any time there is a signal s1
k, that signal is blurred or

“garbled” by some stochastic process that is independent of the true state of the world. I.e.

q2
ik′ =

∑
k Pr[k

′ | k]q1
ik.

Example Consider some merchandise the quality of which can be either good or bad. There

are two types of consumers, connoisseur and gullible. Whilst it is certain that the connoisseur

will judge the quality of the product correctly, the gullible layman will get it right only with

probability 3
4

(meaning he’s wrong in 1
4

of the cases). The connoisseur’s opinion is more

valuable than the layman’s as(
3
4

1
4

1
4

3
4

)
=

(
3
4

1
4

1
4

3
4

)
·

(
1 0

0 1

)
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Thus, in our example, β is given by

β =

(
3
4

1
4

1
4

3
4

)

7.5 The Hirschleifer Paradox

We shall now examine the question whether information is always valuable. Suppose there

are two states of the world occurring with probability p and 1 − p, respectively, and k

consumers with initial endowments xk1, xk2. Now, define, U∗
k as

max
xk1,xk2

{pu(xk1) + (1− p)u(xk2)} ≡ U∗
k

s.t. p1xk1 + p2xk2 ≤ p1xk1 + p2xk2

Individual rationality implies:

U∗
k ≥ Uk ≡ pu(xk1) + (1− p)u(xk2)

i.e. nobody can be made worse off by voluntary trade.

Now, suppose there is a public signal before trading can occur, so that everybody knows

the true state of the world. In that case, no trade will happen as nobody would be willing

to trade income in the state that everybody knows will occur for income in a state that will

not occur. Thus, the ex ante—value of the signal is negative.

Only private information is individually valuable, though it may not always be socially

desirable, as other agents may draw inferences from the informed agent’s behavior, which

may eventually also lead to market breakdown.

However, if there are other ways than trade for society to react to the information, then

all information may be socially valuable (e.g. flood warnings).

Some people may be averse to information for psychological reasons (e.g. genetic testing).

Commitment without prior information may also be a nice signaling device. Consider this

hands—on example by Drèze: A man has two daughters, Ann and Barbara, one of whom will

inherit a million $. Peter is in love with Ann, but Ann is afraid lest Peter just be after the

money. Eventually, the father will announce which of his daughters will inherit the million

$. Peter will prefer to propose before the father announces who will inherit, as marrying

Ann with there being a chance of not getting the million $ is a signal that is much less costly

(if costly at all) for the type that loves Ann than for the type that loves money.

59



7.6 Search

• Suppose agent’s (indirect) utility depends on some economic variable (p), such as price,

wage, quality...

• This variable is randomly distributed, i.e. different stores are (unsystematically) charg-

ing different prices

• There is some (costly) mechanism for getting price information (magazines, browsing

around in stores, making phone calls...)

• Search costs are dependent on technology (e.g. the internet leads to lower search costs),

number of stores, opportunity costs for time (meaning wealthier individuals will search

less).

• In our Walrasian models of Bertrand competition, we suppose there is perfect infor-

mation, which is equivalent to saying that search costs are 0.

Example • Risk—neutral agent

• Agent’s valuation:1

• Price uniformly distributed on the unit interval

• Marginal search costs of c

• 2 stores

(a) Search without recall

Backward induction: Suppose agent did not buy at the first store. Then, she should always

buy at the second store. Her expected payoff in period 2 is thus: E[π] = 1−E[p]−c = 1
2
−c.

In period 1, agent receives a price offer of p1. Thus, agent should buy in period 1 iff

1− p1 ≥ 1
2
− c. From this, we get agent’s reservation prices p̂1 = 1

2
+ c and p̂2 = 1.

(b) With recall

In period 1, agent has learned p1. Thus, the value of the additional information agent

could glean in period 2 is given by

Pr[p2 < p1]E[p1 − p2 | p2 < p1]− c = p1(p1 − E[p2 | p2 < p1]) = p1 ·
p1

2
− c ≥ 0

⇐⇒ p2
1 ≥ 2c

Thus, we get agent’s reservation prices p̂1 =
√

2c and p̂2 = p1, respectively.
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Now, let us consider a more general case. Let prices be distributed according to the density

function f(p) and the cumulative distribution function F (m) = Pr[p ≤ m] =
∫ m

0
f(p) dp.

Let c continue to denote marginal search costs, whilst N is the total number of stores.

Furthermore, let mj denote the minimum price after j periods of searching. The expected

gain from searching in one more store is then given by

Pr[p < mj] · E[mj − p | p < mj]− c

= E[max{0;mj − p}]− c

=

∫ mj

0

(mj − p)f(p) dp− c

= (mj − p)F (p)|mj

0 −
∫ mj

0

(−1)F (p) dp− c

=

∫ mj

0

F (p) dp− c ≡ g(mj)− c

Hence, agent should stop searching when g(mj) ≤ c. The optimum stopping rule is thus a

reservation price rule, with reservation price p̂ = g−1(c). Note that, apart from the last store,

the reservation price is independent of the period. The reservation price in the last period

is p̂N = mN−1. Also note that as the decision problem is recursive, agent will only decide

whether to go on searching for one more period, because, in our model, the information

agent gleans in stores where she does not buy is of no value whatsoever.

• Optimum search behavior depends on the price distribution f(p) and on the search

costs.

• c ↑⇒ p̂t ↑ since in optimum c =
∫ p̂

0
F (p) dp

• Consider G(p) with F (p) �SOSD G(p), meaning with G(p), you are more likely to find

very high (low) prices. SOSD implies that
∫ m

0
G(p) dp ≥

∫ m

0
F (p) dp. Thus, reservation

price is lower with G, p̂G < p̂F , implying more searching going on with G, as you are

more likely to find a really good deal if prices are very dispersed.

• Rothschild (1974) looks at a situation where consumers do not know the distribution

of prices. His results are by and large similar to those presented here, but a lower price

will point to a price distribution different from that agent had believed for thus far;

reservation prices are thus not stable.

Thus far, we have supposed the distribution of prices to be exogenously given. But why

would firms want to set different prices? Suppose all the firms and all the consumers were
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identical, then, an obvious equilibrium would be for all the firms to set p = p̂. However,

search costs enable firms to turn a profit. To induce search, however, there has to be price

dispersion. Thus, in order to model search behavior, one needs

• heterogeneous firms

• ex post—heterogeneous consumers

• some mechanism that matches consumers and firms: market matching models

These market matching models, such as McKenna’s in “Surveys in the Economics of Uncer-

tainty” basically lead to the following conclusions:

• In equilibrium, there is no searching

• No firm will set a price above the consumers’ reservation price

• Stemming from the specifics of MacKenna’s model, many firms will set their prices

equal to the consumers’ reservation price (there is probability mass on p = p̂).

• Key result: Firms do wield limited monopoly power, which may either be grounded

regionally and appertain to the physical search costs (of going from store to store,

e.g.) or it may be customer—specific (due to differing search costs, as consumers have

differing opportunity costs for time e.g.)

Extensions of this model have been applied to the labor market, where employees search for

better wage deals whilst still on the job. In this case, one observes a segmentation of the

market: In equilibrium, firms are indifferent between paying higher wages and thus having

a low turnover rate, and paying lower wages while suffering from a high turnover rate.
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8 Non Expected Utility Theory

In 1974, J.H. Drèze claimed: “In other words, a person who does not accept of the axioms

of simple ordering for conditional acts, consequences and events, should not expect any

assistance from scientific methods in handling decision problems.” In this chapter, we shall

examine if this is really so. First, we shall have a look at some paradoxes (8.1.) before

briefly turning our attention to some newer developments in the literature that might help

us handle one or the other of these paradoxes (8.2.).

8.1 Some Selected Problems of Expected Utility Theory

8.1.1 The Allais Paradox

Let there be two gambles, 1 and 2. In gamble 1, agent has to choose between a lottery A1,

yielding 1 million with probability 1 and a lottery B1, paying out 5 million with a probability

of 10%, 1 million with a probability of 89%, but 0 with a probability of 1%. In gamble 2,

agent will choose between lottery A2, yielding 1 million with a probability of 11%, and 0

with the counter—probability, and lottery B2, paying out 5 million with a probability of

10%, 0 with a probability of 90%.

Most test persons chose A1 and B2 but

A1 � B1

⇐⇒ u(1) > 0, 1u(5) + 0, 89u(1) + 0, 01u(0)

⇐⇒ 0, 11u(1) > 0, 1u(5) + 0, 01u(0) (*)

whereas

B2 � A2

⇐⇒ 0, 1u(5) + 0, 9u(0) > 0, 11u(1) + 0, 89u(0)

⇐⇒ 0, 1u(5) + 0, 01u(0) > 0, 11u(1)
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which is in contradiction to (*). Thus, people seem systematically to behave in contradiction

of the independence axion, which is seminal to expected utility theory (cf. Chapter 2).

Indeed, define lottery A ∼ (1mil.; 1) and B ∼ (0, 5mil.; 1
11
, 10

11
). Then,

A1 ∼ 0, 11 · A+ 0, 89 · 1mil.

B1 ∼ 0, 11 ·B + 0, 89 · 1mil.

A2 ∼ 0, 11 · A+ 0, 89 · 0

B2 ∼ 0, 11 ·B + 0, 89 · 0

Machina came up with an ingenious way to represent a three—dimensional lottery in a two—

dimensional diagram by using the fact that p1 + p2 + p3 = 1. Suppose the three possible

payoffs are 0, 1 million, and 5 million.

Figure 19: Machina’s Triangle
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If expected utility theory applies, indifference curves in Machina’s Triangle have to be

linear and parallel. Why?

Eu = p1u(0) + (1− p1 − p3)u(1) + p3u(5)

dEu = dp1[u(0)− u(1)] + dp3[u(5)− u(1)] =! 0

⇐⇒ dp3

dp1

= −u(0)− u(1)

u(5)− u(1)
= const

As a reaction, Machina proposed a “fanning out” of the linear indifference curves.

Figure 20: “Fanning Out” in Machina’s Triangle

Other reactions:

• Hirschleifer & Riley: The question was misleading
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• Substitue the independence axiom, e.g. by the “Betweenness Axiom”: For all lotteries

L and L′:

∀λ ∈ [0; 1] : L ∼ L′ ⇒ λL+ (1− λ)L′ ∼ L

• New theory: “Regret Theory” (cf. class)

8.1.2 Ellsberg Paradox

Consider the following gamble: In box 1, there are 50 red balls and 50 black balls. In box 2,

there are also 100 black and red balls, but the proportion of red to black balls is not known.

Agent will choose between lottery A1, which will pay out 100$ if the ball drawn from box

1 is red and 0 otherwise, and lottery B1, which will pay out 100$ if the ball drawn from

box 2 is red and 0 otherwise. Generally, people prefer A1. Now, the test person is asked to

choose between lottery A2, which will pay out 100$ if the ball drawn from box 1 is black and

0 otherwise, and lottery B2, which will pay out 100$ if the ball drawn from box 2 is black

and 0 otherwise. Most of the people who have preferred A1 over B1 now prefer A2 over B2,

which is inconsistent, because rational agents should only prefer A2 over B2 if they believe

that there are fewer than 50 black balls in box 2. But that would imply that there are more

than 50 red balls in box 2, so these people should then also prefer B1 over A1.

• People may be risk—averse over probabilities, meaning they prefer certain probabilities

over uncertain probs. By contrast, vNM—utility is risk—neutral (linear) concerning

probabilities.

• “Lemons” explanation: People may think the gamemaster has some additional infor-

mation (e.g. that there are green balls in box 2)

• Hans—Werner Sinn has proved that for a certain class of utility functions it is indeed

optimal to assign equal probability in case of uncertainty

8.1.3 Gambling

There are explanations of gambling that are consistent with expected utility theory:

• Differing subjective probabilities (e.g. horse racing)

• The entertainment aspect is more important than the financial aspect
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Figure 21: Friedman & Savage (1948)

Friedman & Savage thought that people’s utility function was

• concave for low incomes: demand for insurance

• convex for medium incomes

• concave for high incomes: explains why lotteries would usually have several different

prizes

Problem: There is too much gambling going on in this model, which seems more suited to

pathological gamblers than to the general population
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8.1.4 Some Further Problems of Expected Utility Theory

Most of these hark back to Kahnemann & Tversky:

• People do not seem to take previous information into account; there does not seem to

be much in the way of Bayesian updating going on in the real world, which may spell

trouble for the predictive value of Game—Theoretic analyses

• People do not have a feeling for the impact of sample size

• Many people think (h:heads; t:tails) hthtth likelier than ttthhh, and the latter likelier

than tttttt

• Monty Hall’s Puzzle

• Framing effects

• House money effects

• Endowment effects

• ...

8.2 Some Selected Reactions to the Problems With Expected

Utility Theory

• Drèze: cf. beginning of the chapter

• Hirschleifer & Riley use an evolutionary argument: If people did not behave according

to expected utility theory that would open up arbitrage possibilities for scoundrels

and other people of the same sort to avail themselves of people’s irrationality. Hence,

Hirschleifer & Riley conclude that people behave as predicted by expected utility the-

ory, at least when the stakes are high.

For the rest of this chapter, however, we shall be focusing on non expected utility theory,

which generally consists in replacing vNM’s independence axiom with something else, such

as, e.g., Machina’s fanning out. Other examples include:

• Weighted probabilities: Probabilities are assigned a weighting function φ s.t. U(L) =∑
φ(pi)xi.
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Now, suppose φ(0, 5) < 0, 5 and L = (0.5, 0.5;x + ε1, x + ε2). U(L) is now given by

U(L) = φ(0.5)(x + ε1) + φ(0.5)(x + ε2) < x for ε1, ε2 > 0 and very small. However,

lottery L dominates x as L will certainly lead to a payoff higher than x.

• Local Expected Utility Theory (Machina): People only locally behave as predicted by

expected utility theory.

• Rank—Dependent Expected Utility (Quiggin)

We will now more closely examine “Prospect Theory” by Kahnemann & Tversky.

8.2.1 Prospect Theory (Kahnemann & Tversky, Econometrica, 1979)

Expected utility theory having been refuted, Kahnemann & Tversky were looking for a new

descriptive concept. They were able to distinguish two phases in the decision process, an

editing phase and a valuation phase:

1. Editing Phase

• Coding : Link prospect, i.e. gamble, to a reference point

• Combination: Pool identical outcomes

• Segregation: A common riskless component is segregated from the prospect

• Cancelation: Discard common constituents

• Simplification: (0.51, 0.49; 0, 99) ∼ (0.5, 0.5; 0, 100)

Discard extremely unlikely outcomes

• Detection of Dominance: Do not consider dominated prospects

2. Valuation Phase

A prospect’s value V is expressed on two scales, v and π:

• Probabilities p are weighted with the function π : p 7→ π(p)

• v : x 7→ v(x) assigns a value to each outcome; it measures deviations from the reference

point so that a change in the reference point may lead to a change in the preference

order, utility being defined on gains and losses, rather than wealth levels.
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Figure 22: Shape of the value function

8.2.2 Hyperbolic Discounting

Here, the discount factor is no longer assumed to be constant, in contrast to exponential

discounting, where for all t ∈ [0;T ] payments are discounted by a factor δt (δ const). Hyper-

bolic discounting can account for time inconsistencies, such as agent’s preferring 2a in 101

days over a in 100 days, whilst preferring a today over 2a tomorrow.

8.2.3 Inequity Aversion

Consider the following ultimatum game:

Player 1, the proposer, has to decide which share s ∈ [0; 1] of some sum of money X

he would be willing to concede to player 2, the responder. The latter can either accept of
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or reject the former’s offer. If he accepts, he gets a payoff of sX, whilst player 1 receives

(1− s)X. If he rejects, neither player receives anything.

Backward induction would yield that 2 would be indifferent between accepting of a pro-

posal of s = 0 and rejecting it. 1 will anticipate that and propose s = 0, of which 2 will

accept in subgame—perfect Nash equilibrium (SPNE). If there is a smallest monetary unit,

there is another SPNE where 2 gets that smallest monetary unit.

However, as e.g. Camerer & Thaler (1995) have shown, real—world players will usually

not play the SPNE—strategies.

• The modal value of s is 0.5

• The average is s ∈ [0.3; 0.4]

• Offers s < 0.2 will usually be rejected

• The rejection rate is decreasing in s

• The rejection rate for a given s is lower if s is determined by random rather than

deliberately chosen by player 1

• Cameron (1995) shows that these results do not change as the stakes are raised.
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