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Preface

Our subject

This book is about uncertainty and information in economics. Uncertainty and infor-
mation are inexorably linked. You face uncertainty when you do not know something
about the world, such as the consequences of your actions. This means that you lack
complete information. Obtaining information then resolves this uncertainty.

As topics in economics, we distinguish between the economics of uncertainty and
the economics of information. Both topics involve uncertainty and information. Here
is how they differ:

• The economics of uncertainty is about economic situations in which there is uncer-
tainty but all involved parties have the same information.

• The economics of information is about situations in which the parties have different
or asymmetric information.

Here is a scenario that would fall under the economics of uncertainty. When you
buy life insurance for a specific flight, it is because you face uncertainty about whether
the airplane will crash. The life insurance policy transfers some of this risk to the
insurance company, which then also faces uncertainty about the insurance losses it
will pay. It is a rough approximation that both you and the insurance company have
the same information about the likelihood that the plane will crash. Both you and the
insurance company can easily determine whether the plane crashes. With respect to
this transaction, you and the insurance company have the same information. When
studying this kind of transaction, we will be interested in the premiums offered by
insurance companies and the optimal amount of insurance the flyer should buy.

Here is a scenario that would fall under the economics of information. Suppose you
are buying health insurance. As with the flight insurance, your goal is to transfer risk
to an insurance company. This time, you and the insurance company have different
information about several aspects of the transaction:

• Before buying the insurance, you know more about whether you have a high risk
of heart attack or other diseases.

• After buying the insurance, you can take actions that increase the chances of health
problems, such as smoking, eating a high-fat diet, or engaging in high-risk sex, and
the insurance company cannot observe whether you take these actions.

• When you become unhealthy, you demand reimbursements or health care. You—
and your doctor—have better information about the state of your health and the
value of the medical procedures than the insurance company does.

When contracting with you, the insurance companies have to take into account
that you may lie about your existing health condition before contracting, you may se-
cretly engage in high-risk activities after contracting, and you may exaggerate health
problems in order to receive more medical attention or reimbursements. When study-
ing such an insurance transaction with asymmetric information, we will be interested
in how the insurance contracts contain special provisions, such as deductibles, that are
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meant to compensate for the informational asymmetries.
Uncertainty and information are not specific to a particular set of economic ac-

tivities. Rather, they are a potential aspect of any economic activity. Therefore, the
economics of uncertainty and information is not a separate subdiscipline, but rather it
is part of all the subdisciplines:

• It is part of labor economics because, for example, employees know more about
their capabilities within a firm than the employers do.

• It is important in finance because most financial instruments have uncertain re-
turns, and traders have different information about these returns; furthermore,
most financial instruments serve the role of sharing risks, the way insurance con-
tracts do.

• It is part of health economics, as illustrated by the health insurance example given
above.

• It is part of industrial organization and market structure because sellers have better
information about the value of their goods than buyers do, and because each firm
has better information about its costs than its competitors do.

Our methods

This list could go on. In this book, we will cover many of these topics. However, rather
than studying a series of seemingly unrelated anecdotes about uncertainty and asym-
metric information, the goal is to develop unifying models and theories.

A model is a simplified representation of a phenomenon, that emphasizes only the
most important aspects, that is specified by using a formal language, and that allows
us to derive consequences of the parameters of the model.

Simplification is a goal of modeling, not an unintended negative consequence. The
world is too complex to be understood by considering all its detail at the same time.
The purpose of models to identify certain important cause-and-effect relationships be-
tween just a few components of the world. If the model is good, then the components
we ignore might introduce new relationships, but will not obliterate those we have
identified. Of course, all conclusions drawn from models have to be taken with a grain
of salt and not applied dogmatically to real-world situations; but this should be a lesson
you learned ago about all the education you have received.

The formal language we use for the models in this book is mathematics, although
limited to simple algebra, single-variable calculus, and a little probability theory. The
use of mathematics does not mean that our theories are meant to generative quanti-
tative answers from the specific values of the data in the model. Instead, much of our
theory is qualitative, meaning that the specific data may be difficult to observe and so
we attempt to say as much as possible using only a few qualitative properties of the
data.



Chapter 1

Choosing among Uncertain
Prospects

1.1 Introduction to decision theory

1.1.1 Why individual decision theory in economics?

In microeconomics, we build models by first identifying the individual agents, who
may be individuals (such as workers and managers) or organizations (such as house-
holds, firms and countries). Then we specify the motives of the individual agents and
derive the behavior of these agents from their motives. Hence, the foundation of mi-
croeconomics is individual decision theory.

1.1.2 Descriptive, prescriptive and normative theories

Decision theory has two goals: To describe how agents do make decisions (descriptive
decision theory) and to prescribe how agents should make decisions (prescriptive deci-
sion theory). As in any theoretical modeling, decision theory balances accuracy and
simplicity. A prescriptive decision theory that is too complicated to explain or learn is
hardly useful for a decision maker. A descriptive theory should be simple because it is
meant to be a framework that organizes and unifies a variety of situations and behav-
ior, because it should be tractable enough to derive conclusions from it, and because
we may have to estimate the parameters of the theory from a limited amount of data.

There is a third branch of decision theory, called normative decision theory, whose
goal is to describe how a hypothetical, infinitely intelligent being would make deci-
sions. This exercise is simpler than descriptive or prescriptive decision theory, because
we do not have to worry about complications such as errors or forgetting and we do
not have to worry about the heterogeneity of the intelligence and experience of deci-
sion makers. There are only a few ways to be perfect, but many ways to be imperfect!
This simplicity has made normative decision theory a good source of models for both
descriptive and prescriptive decision theory. In this book, all our models will be drawn
from normative theories.

Since people are far from infinitely smart, it is easy to come up with empirical vi-
olations of these theories and I will do so on several occasions. The purpose of these
examples is not to convince you that the models are bad; a model is supposed to be
a simplification—rather than replication—of reality. Instead, the purpose is to give
you a healthy appreciation of the limitations of the theories. In particular, I want to
avoid some extreme and unreasonable views that have polarized decision theory in
the past. Economists, who have to make many concessions to simplicity at the level
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2 Choosing among Uncertain Prospects Chapter 1

of decision theory in order to build up complex models involving many agents, have
predominantly used normative decision theory; in the process, some economists have
forgotten that the theory is just an approximation, and not the Truth. For example,
some economists have claimed that even if a person violated a normative theory, he
would not do so after the inconsistency was explained to him; this ignores the fact that
implementing a normative theory requires computational power beyond that of real
humans. On the other hand, many decision theorists outside of economics—especially
in psychology and philosophy, whose focus is on the behavior of individuals and who
therefore can develop more realistic descriptive models—have sometimes insinuated
that the accumulated evidence of violations of normative theories invalidates the eco-
nomic models built on these theories. This view ignores the fact that, even if there are
benefits to more complex models of decision making,1 the simpler models have been
useful approximations in the study of many economic phenomena.

1.1.3 A review of choice, preferences and utility

As an introduction to the kind of decision-theory exercises in which we will engage in
subsequent sections, I will review a decision theory for choice without uncertainty.

First, we have to specify the objects of choice and the decision process. Let’s take a
basic situation in which an agent can choose from a set A of feasible alternatives, which
belong to a large set X containing all potential alternatives. For example, X is the set
of all consumption bundles, and A is the budget set, which depends on prices and the
agent’s wealth. Alternatively, X is the set of potential presidential candidates and A is
the set of candidates who appear on the ballot. We want a model that tells us what the
agent would choose from each set of feasible alternatives. We do not want to determine
exactly what choices would be made; this would be a list of data for a single individual
rather than a model that would apply to many individuals whose choices would differ.
Instead, we want to find some consistency conditions that allow us to come up with a
simple representation of choice that can be used to derive conclusions without knowing
the actual choices, and that has a few parameters that could be estimated from limited
data.

Assume that X is finite and every non-empty subset A of X is a potential feasible
set.2 For each set A ⊂ X of feasible alternatives, let C(A) be the elements of A that
the decision maker might choose from A. The decision maker always has to choose
something, which means that C(A) is non-empty, but C(A) may contain more than
one item because of indifference. C(·) is called the decision maker’s choice rule.

Let x and y belong to X. If x ∈ C(A) for some A ⊂ X containing x and y (that
is, y is available but x may be chosen), then we say that x is revealed weakly preferred
to y. If also y /∈ C(A), then we say that x is revealed preferred to y or, if we want to
emphasize that the preference is not weak, that x is revealed strictly preferred to y.

We now impose a consistency condition, called the Weak Axiom of Revealed Prefer-
ence (WARP). It says that if x is revealed weakly preferred to y, then y is not revealed
preferred to x:

1. This is an area of current research in economics
2. The discussion here requires a few extra technical details for the case where X is infinite.
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Assumption . Let x and y belong to X, and let A and B be subsets of X containing
x and y. If x ∈ C(A) and y ∈ C(B), then x ∈ C(B).

You can see why this is a natural axiom of a normative theory, but at best an ap-
proximation for descriptive or prescriptive theories. Especially when choice sets are
large and complex, achieving such consistency is difficult.

This one consistency condition gets us far. First, it implies that choices can be
represented by preferences, which are defined by binary choices. For each x and y in
X, write x � y if x ∈ C({x , y}). This is read “x is weakly preferred to y.” If also
y /∈ C({x , y}), then write also x � y (“x is (strictly) preferred to y”); otherwise, write
also x ∼ y (“x is indifferent to y”). The symbols �, � and ∼ are called the (weak)
preference, strict preference, and indifference relations, respectively.

Definition . The choice rule C(·) satisfies preference maximization if, for every A ⊂
X and x ∈ A:

x ∈ C(A) ⇐⇒ x � y for all y ∈ A.

In words, choices from large sets are consistent with binary choices. If we know bi-
nary choices (preferences), then we know C(·). Preference maximization implies a
considerable savings in the amount of information we need in order to know C(·).

It is also useful that preferences satisfy some consistency conditions themselves.

Definition . The preference relation � is said to be rational if it satisfies:

1. (Completeness) For all x , y ∈ X, we have x � y or y � x (or both).
2. (Transitivity) For all x , y , z , ∈ X, if x � y and y � z, then x � z.

You can probably guess what comes next.

Proposition . The choice rule C(·) satisfies WARP if and only if it satisfies preference
maximization and the preference relation is rational.

One advantage of rational preferences is that they can be represented by a utility
function.

Proposition . If the preference relation � is rational, then there is a utility function
U : X → R such that, for all x , y , ∈ X,

x � y ⇐⇒ U (x) ≥ U (y).

The utility representation of� is not unique.3 For example, if x contains just money
values and the decision maker prefers more money to less, then any strictly increasing
function U : X → R is a representation of the preferences.

3. If U : X → R is a utility representation, and if f : R → R is strictly increasing, then the composition
V : X → R of U and f , defined by V (x) = f (U (x)), is also a utility representation. V is called a monotonic
transformation of U .



4 Choosing among Uncertain Prospects Chapter 1

If I just want to say that x is weakly preferred to y, then it is more straightforward
to write x � y rather than U (x) ≥ U (y). Utility functions have more important uses.
If I want to present an example of preferences and if X is large, it can be easier to write
down a utility function rather than a list of preferences. For example, if there are two
consumption goods, it is easy to say that a consumer’s utility function for quantities x

and x of the two goods is

U (x , x ) = log x + log x ,

but impossible to list the preferences for all x and x. Furthermore, if I do not know
preferences, I can posit a utility function with a small number of unknown parameters
and then estimate these parameters using econometrics.

You might be having the following thought.

OK, so we have a model in which a decision maker is a utility maximizer. Why
didn’t we just assume this in the first place? Why bother with WARP and all that
other stuff in between?

We could have done so. However, the intermediate steps are important because they
tell us in more intuitive terms what lies behind the model. If we just assumed that
agents are utility maximizers, we would not have a good rebuttal to the complaint that
utility maximization is a crazy idea since no one really walks around with a utility
function in her head. Instead, we have the following response.

Utility maximization is just a modeler’s tool for representing choices. WARP is a
compelling consistency condition even for decision makers who are not explicitly
maximizing utility, and it implies that the utility representation is valid. Further-
more, although it it is difficult to test whether a consumer has a particular utility
function, it is easy to test for violations of WARP from observed behavior, and
hence check the empirical validity of the existence of a utility representation.

1.2 Lotteries and objective expected utility

1.2.1 Simple and compound lotteries

Now we turn to decision making under uncertainty. We begin with the simplest case,
where outcomes (also called consequences or prizes) are determined by some random-
ization device such that the probability of each outcome can be objectively determined.
Leading examples are lotteries and other gambles. It is assumed that the decision maker
cares only about the outcome or the probability distribution over outcomes—not about
the random process that generates the outcome. For example, the decision maker is
indifferent between the following three choices because they yield the same probability
distributions over outcomes:

1. A die is thrown; the DM gets $1 if the die is odd and $0 otherwise.
2. A die is thrown; the DM gets $1 if the die is at least four and $0 otherwise.
3. A coin is tossed; the DM gets $1 if the coin comes up heads and $0 otherwise.
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Figure 1.1

Outcome Prob.

Hoboken 1/2
NYC 1/6

San Fran 1/6
London 1/6 Hoboken




NYC




San Fran




London




Two ways to present a simple lottery.

This means that when describing the DM’s choices, we need specify only the prob-
ability distribution over outcome, rather than the random process by which outcomes
are selected. (We could also specify the random process, but this would be irrelevant
detail.)

Formally, let X be the set of outcomes. We assume, for now at least, that X is finite.
Each uncertain prospect is represented by a probability measure P : X → R on X, where
P(x) is the probability of outcome x. What makes a function P : X → R a probability
measure are the following two properties:

1. P(x) ≥  for every x ∈ X.
2. ∑x∈X P(x) = .

That is, (1) the probability of each outcome is non-negative and (2) the probability that
some outcome occurs is 1. We call these uncertain prospects or probability measures
lotteries. A simple lottery can be visualized as a tree, with two levels. We let the out-
comes be the terminal nodes and write the probabilities on the branches. An example
is given in Figure 1.1.

Let L be the set of lotteries, i.e., the set of probability measures on X. Our task
is to characterize how a decision maker chooses from any subset of feasible lotteries.
We can start by applying the results of Section 1.1.3. Although I described that section
as a review of choice under certainty, the set X of alternatives was arbitrary and could
have been the set L of lotteries. Thus, under WARP,4 the decision maker’s choices
maximize a complete, transitive preference relation �, which can be represented by a
utility function U : L → R.

Are we finished? Is there no difference between choice under certainty and choice
under uncertainty? We could stop here, but we have not taken advantage of the fact
that lotteries have special structures. Using the special properties of choice under un-
certainty, we can obtain stronger results. We do this by imposing some restrictions on
preferences over lotteries that are natural for a normative theory.

For this purpose, we introduce compound lotteries. In a compound lottery, first
some uncertainty is resolved and then the DM faces a new lottery. For example, con-
sider a housing lottery where first you are assigned randomly to a dorm and then you
are assigned randomly to a roommate. Formally, given a set X of outcomes: (i) a simple
lottery is a lottery as we defined above; (ii) a compound lottery is a lottery in which the
outcomes are simple lotteries. A compound lottery can be represented by a tree with

4. With a technical modification, because the set of lotteries is not finite.
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Figure 1.2

P




Hoboken
(1/8)




NYC
(1/6)




San Fran
(1/24)




Q




Hoboken
(3/8)




San Fran
(1/8)




London
(1/6)




A compound lottery. It has the same overall distribution over outcomes as the simple
lottery in Figure 1.1.

three levels, in which each subtree is a simple lottery and the probability of each simple
lottery is written on the branches of the top level. An example is given in Figure 1.2.

We can find the probability of each terminal node in a compound lottery by mul-
tiplying the probabilities of the branches leading to the terminal nodes. For example,
the probability of the left-most terminal node in Figure 1.2 is the probability of facing
the lottery P times the probability of drawing Hoboken in lottery P, or /× / = /.
In Figure 1.2, the probability of each terminal node is written below the node.

Each outcome can appear in more than one terminal node of a compound lottery.
That is, it can be a possible outcome of more than one of the possible second-stage
lotteries. To find the overall probability of each outcome, we have to sum the probabil-
ity of each terminal node containing the outcome. If α , . . . , αn are the probabilities
of each of the possible second-stage lotteries P , . . . , Pn , then the overall probability
R(x) of outcome x in the compound lottery is

R(x) = α P (x) + α P (x) + · · · + αn Pn (x). (1.1)

This overall probability measure R on X is a simple lottery that we call the reduced lot-
tery of the compound lottery. Performing these calculations for the compound lottery
in Figure 1.2 reveals that its reduced lottery is the simple lottery in Figure 1.1.

The formula in equation (1.1) for the probabilities in the reduced lottery suggests
the following notation for denoting the reduced lottery:

R = α P + α P + · · · + αn Pn . (1.2)

That is, if P , . . . , Pn are simple lotteries and α , . . . , αn are positive numbers that sum
to 1, then equation (1.2) shows the simple lottery for which the probability of outcome
x is given by equation (1.1). Hence, it is the reduced lottery of the compound lottery
in which lottery Pi occurs in the second stage with probability αi .

In keeping with our assumption that the decision maker cares only about outcomes
or consequences—not about the random process that determines the outcomes—we
assume that the decision maker is indifferent between a compound lottery and its re-
duced lottery. (This is an example of what is called consequentialism.) If each compound
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lottery is equivalent to its reduced lottery, then compound lotteries become what we
said we should avoid: irrelevant detail. However, they are useful for stating some as-
sumptions about the decision maker’s preferences in an intuitive and compelling way.

1.2.2 The Independence Axiom

Your friend Akbar has received a free international round-trip ticket and is planning
to use it for his winter vacation. Unfortunately, he is making his reservation late. His
preferred destinations, Hawaii and Madrid, are sold out. So he makes a reservation
for Cancun. He can also choose to be wait-listed for Hawaii or Madrid, but not both.
For either destination, the probability that he can ultimately get a reservation is 1/2.
Depending on whether he chooses to be wait-listed for Hawaii or Madrid, he faces one
of the following lotteries:

Figure 1.3

Cancun




Hawaii




Cancun




Madrid




Akbar, not having read this book and bewildered by the uncertainty in this deci-
sion, asks for your advice.

“Simple!” you tell him. “Which destination do you prefer, Hawaii or Madrid?”
“Madrid, by a long shot!” he replies.
You advise him to get on the waiting list for Madrid and you give him the follow-

ing reason: In either lottery, the probability of not getting a reservation is the same
(1/2) and the consequence when he doesn’t get a reservation is the same (ending up in
Cancun). Therefore, all that should matter is what happens when he does get a reser-
vation. If he would prefer Madrid for sure over Hawaii for sure, then he should get on
the waiting list for Madrid.

Akbar goes off to make his reservation, but comes back to you the next day looking
gloomy and in need of more help. It turns out that he had previously misunderstood
the travel agent. If he decides to get on the waiting list for Hawaii, then the situation is
as before. However, if he decides to get on the waiting list for Madrid, then the situation
is completely different. First, the probability of getting a reservation for Madrid is only
1/4 (rather than 1/2). Second, to get on the waiting list, he has to drop his reservation
for Cancun. If he then doesn’t get a reservation for Madrid, there is a 2/3 chance he can
get back his reservation for Cancun, but there is a 1/3 chance he will only be able to get
a reservation for Toronto. Thus, he really has to choose from the lotteries in Figure 1.4.
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Figure 1.4

P

Cancun




Hawaii




P




Cancun




Toronto




Madrid




To help, you suggest that Akbar instead compare the lotteries in Figure 1.5.

Figure 1.5

P

Cancun




Hawaii




P′


Cancun







Toronto




Madrid




You explain that P and P′
 have the same reduced lottery, shown in Figure 1.6.

Figure 1.6

P-reduced

Cancun




Toronto




Madrid




Hence, the ranking of P and P should be the same as the ranking of P and P′
.

Akbar resists this last idea. He claims that this rewriting of P has changed the
decision problem, because P′

 does not reflect the way uncertainty is resolved. In the
tree, it looks as if first Akbar learns whether he goes to Cancun and then, if not, he
faces a 50–50 chance of Toronto or Madrid. But you explain to Akbar that all that
should matter is what simple lottery the compound lottery reduces to. If, for example,
the destination is chosen by flipping a coin twice, should Akbar’s preferences depend
on whether he closes his eyes during the coin tosses?
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Figure 1.7
I

R

 − α

P

α

II

R

 − α

Q

α

III

S

 − β

P

β

IV

S

 − β

Q

β

P, Q, R and S are lotteries, and α and β are probabilities. The Independence Axiom states
that lottery I is preferred to lottery II if and only if lottery P is preferred to lottery Q. An
implication of the Independence Axiom is that lottery III is preferred to lottery IV if and
only if lottery I is preferred to lottery II.

Then you explain that you rewrote P because P′
 is easier to compare with P. You

ask Akbar: “What would you prefer, to go to Hawaii for sure, or to have a 50-50 chance
between going to Toronto and Madrid?” (If he can’t answer this question, then there
isn’t much you can do to help him!)

He replies, “To go to Hawaii for sure.”
Then you advise him to get on the waiting list for Hawaii. He is not quite convinced,

but you explain: “Compare P and P′
. In either case, there is a 50-50 chance of ending

up in Cancun. The difference is that—conditional on not ending up in Cancun—you
get to go to Hawaii for sure if you get wait-listed for Hawaii, whereas you face a 50-50
chance between going to Toronto or Madrid if you get wait-listed for Madrid. Only
this difference should matter, not the left branches of the trees.”

Here is a general statement of the principle. Let P, Q and R be simple lotteries.
Let I be a compound lottery that, in the first stage, yields lottery P with probability α
and lottery R with probability  − α. Let II be a compound lottery that yields lottery
Q with probability α and lottery R with probability  − α. These compound lotteries
are shown in the top row of Figure 1.7, with the simple lotteries P, Q and R drawn as
terminal nodes rather than subtrees (for brevity). It is plausible that, normatively, your
choices between I and II should not depend on R or α. Instead, you choose I over II if
and only if you would choose P over Q. This is called the Independence Axiom.

Recall that the reduced lotteries for lotteries I and II are denoted by αP + ( − α)R
and αQ+ (−α)R, respectively. Then the Independence Axiom can be stated formally
as follows:

Assumption . (Independence Axiom) For all lotteries P, Q , R ∈ L and all α such
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that  < α < ,

P � Q ⇐⇒ αP + ( − α)R � αQ + ( − α)R . (1.3)

The Independence Axiom does not tell us how a DM should rank a particular pair
of lotteries. Instead, it is a consistency condition on multiple rankings. By successive
applications, we can find consistency conditions for a wider range of choices than is
stated directly in the axiom. Let S be a simple lottery and let β be such that  < β < .
The following compound lotteries

III = βP + ( − β)S

IV = βQ + ( − β)S

are shown in bottom row of Figure 1.7. Take a moment to convince yourself that, for
example, the strict preferences I � II and IV � III violate the Independence Axiom.

Let’s return to Akbar’s travel plans to see this consistency condition in use. The
next year, Akbar again receives free tickets and again makes his reservations a little bit
late. But this time, Akbar comes to you proud and smiling; he says that he was able
to make his choices without your help this year. Here is a summary of the choices he
faced and the decisions he made: When he first went to the travel agent, he had to
choose between the lotteries in Figure 1.8.

Figure 1.8
I

Cancun



II

Cancun




Hoboken




Rome




Akbar chose II over I. Once again, the travel agent had made a mistake and Akbar
had to choose again, this time between the lotteries in Figure 1.9.

Figure 1.9
III

Cancun




Hoboken




IV

Hoboken




Rome




This time, Akbar chose III over IV.
“Akbar,” you say, “Your choices are inconsistent!”
“What!?!” he replies. “You are just imposing your own preferences over vacation

spots on my decisions; these may not be the choices you would have made, but they
are not inconsistent.”
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Just looking at the simple lotteries as drawn above, it is hard to explain to Akbar
why the choices are inconsistent. But if we can rewrite the four lotteries in the form
shown in Figure 1.7, then we have shown that Akbar’s choices violate the Independence
Axiom.

To do this rewriting, we need to find lotteries P, Q, R and S and probabilities α and
β such that the compound lotteries in Figure 1.7 reduce to the corresponding simple
lotteries in Akbar’s decision problems. That is, for each possible outcome x, we must
have

I(x) = αP(x) + ( − α)R(x)

II(x) = αQ(x) + ( − α)R(x)

III(x) = βP(x) + ( − β)S(x)

IV(x) = βQ(x) + ( − β)S(x).

The first thing to do is restrict the possible outcomes of each lottery. For example, P
can place positive probability only on those outcomes that both I and III place positive
probability on; R can place positive probability only on those outcomes that both I and
II place positive probability on. We therefore know that possible outcomes for each of
the simple lotteries are at most:

Lottery Possible Outcomes

P Cancun
Q Hoboken, Rome
R Cancun
S Hoboken

This example ends up being quite simple. P, R and S have only one possible outcome.
Q has two possible outcomes; hence we only have to find 1 probability number for Q.
Together with the probabilities α and β, we have three unknowns (and many equa-
tions). We can solve the system of equations by inspection:

Q(Cancun) = 
R(Cancun) = 
II(Cancun) = /

⎫⎪⎬
⎪⎭ =⇒ α =  − / = /

R(Hoboken) = 
α = /

II(Hoboken) = /

⎫⎪⎬
⎪⎭ =⇒ Q(Hoboken) = /

P(Cancun) = 
S(Cancun) = 

III(Cancun) = /

⎫⎪⎬
⎪⎭ =⇒ β = /

This rewriting of Akbar’s choices as compound lotteries is shown in Figure 1.10. You
can check that each compound lottery in Figure 1.10 reduces to the corresponding
simple lottery in the Akbar’s travel problem.

Although the Independence Axiom may be a compelling normative principal, it
is not always trivial to see when it applies to particular choices. The consistency of
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Figure 1.10
I

Cancun

/

Cancun

/

II

Cancun

/ /

Hoboken

/

Rome

/

III

Hoboken

/

Cancun

/

IV

Hoboken

/ /

Hoboken

/

Rome

/

Akbar’s choices from Figures 1.8 and 1.9, rewritten as compound lotteries to match the
general scheme shown in Figure 1.7. Akbar’s choices of II over I and of III over IV violate
the Independence Axiom.

the axiom is difficult for real humans to achieve. Consider the four lotteries shown
on the left of Figure 1.11. The Independence Axiom implies that for the choices in
Figure 1.11, I should be preferred to II if and only if III is preferred to IV. However,
I � II and IV � III are commonly observed.5

Exercise 1.1. Consider the pairs of lotteries in Figures E1.1 and E1.2.

5. This example is called the Allais paradox because Maurice Allais, a French economist, presented an
example like this one in debates about expected utility theory in the 1950’s.



Lotteries and objective expected utility 13

Figure 1.11

Lottery: Simple form: Decomposed:

I Prob. Prize

.66 $50,000

.33 $53,000

.01 $0

$50,000

.66 .34

$53,000




$0




II Prob. Prize

1 $50,000

$50,000

.66

$50,000

.34

III Prob. Prize

.67 $0

.33 $53,000

$0

.66 .34

$53,000




$0




IV Prob. Prize

.66 $0

.34 $50,000

$0

.66

$50,000

.34

The simple lotteries on the left are the reduced lotteries of the compound lotteries on
the right. The preferences I � II and IV � III violate the Independence Axiom, but are
common for subjects in decision experiments.
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Figure E1.1
I

Hoboken




London




II

NYC




San Fran




London




Figure E1.2
III

Hoboken




San Fran




London




IV

NYC




San Fran




Show that—to be consistent with the Independence Axiom—if I is chosen over II
then III should be chosen over IV.

Exercise 1.2. A decision maker has maximin preferences over lotteries if, for some
ranking of outcomes, the decision maker chooses the lottery whose worst possible out-
come is the best.

This is not a complete definition, because it does not say how the decision maker
ranks two lotteries when indifferent between their worst possible outcomes. There are
various ways to complete the definition, but a simple one that will suffice for the pur-
pose of this exercise is to assume that the decision maker is then indifferent between the
two lotteries. (The alternative is to describe more complicated rules for breaking this
indifference, such as looking at the second-worst outcome or looking at the probability
placed on the common worst outcome.)

a. Let � be a rational preference ordering on the set L of lotteries on a set X. Let each
element x of X also denote the “lottery” that puts probability 1 on x, so that � also is
an ordering on X. With this notation in mind, state formally what it means for � to be
maximin preferences.

b. Show that maximin preferences violate the Independence Axiom. (You will need
a minor auxiliary assumption.)

Exercise 1.3. Let � be a strict preference relation over a set P of lotteries. Suppose
that � satisfies the following:

(Axiom 1) If p � q, then for all a ∈ (, ) and r ∈ P it follows that

ap + ( − a)r � aq + ( − a)r. (E1.1)
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Show that � also satisfies the following:

(Axiom 2) If p � q and a , b ∈ (, ) are such that a > b, then

ap + ( − a)q � bp + ( − b)q . (E1.2)

1.2.3 First-order stochastic dominance

Let � be the preference relation on the set L of lotteries. For two outcomes x , y ∈ X,
we write x � y if the lottery that puts probability 1 on x is weakly preferred to the
lottery that puts probability 1 on y.

Let P and Q be two lotteries with outcomes x , . . . , xn and y , . . . , yn , respectively,
such that for each i ∈ {, . . . , n}, P(xi ) = Q(yi ). Let αi be this common probability.
We assume that αi >  for all i , but allow that xi = x j or yi = y j for some i �= j .
Lotteries P and Q are shown in tree form in Figure 1.12.

Figure 1.12

P

x

α

x

α

· · ·

· · ·

xn

αn

Q

y

α

y

α

· · ·

· · ·

yn

αn

Definition . Suppose P and Q can be written as above, and xi � yi for all i . Then
P is said to weakly first-order stochastically dominate Q. If also xi � yi for some i , then
P is said to (strictly) first-order stochastically dominate Q. (We abbreviate this P f.o.s.d.
Q.)

It is fairly intuitive that P should be preferred to Q if P f.o.s.d. Q. For example,
suppose that the lotteries are based on the roll of a die with n faces, such that the
probability of face i is αi and the outcome when face i comes up is xi or yi . Then, for
any roll of the die, the outcome of lottery P is preferred to the outcome of lottery Q.

Here is a formal statement and proof:

Proposition . Suppose that � satisfies the Independence Axiom. If P weakly (resp.,
strictly) first-order stochastically dominates Q, then P � Q (resp., P � Q).

Proof. Let R i (for i = , . . . , n) be the lottery with outcomes y , . . . , yi , xi+ , . . . , xn

that occur with probabilities α , . . . , αn , respectively. For example, if n = , then R

and R are lotteries in Figure 1.13.
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Figure 1.13

R

y

α

y

α

x

α

x

α

R

y

α

y

α

y

α

x

α

Observe that R = P and Rn = Q.
Let i ∈ {, . . . , n}. Lotteries R i− and R i are the same except that R i− places

probability αi on xi and R i places probability αi on yi . For example, if n = , then R

and R can be decomposed as in Figure 1.14.

Figure 1.14

R

 − α

y

β

y

β

x

β

x

α

[
βi =

αi /( − α )

]

R

 − α

y

β

y

β

x

β

y

α

The Independence Axiom implies that, if x � y, then R � R, and if x � y,
then R � R. In general, if xi � yi (resp., xi � yi ), then R i− � R i (resp., R i− � R i ).

Therefore, we have shown that if xi � yi for all i , then

P = R � R  � · · · � Rn− � Rn = Q . (1.4)

From the transitivity of �, it follows that P � Q. Furthermore, if xi � yi for some i ,
then one of the preferences equation (1.4) is strict, and it follows that P � Q. �

Not all lotteries can be ranked by f.o.s.d. However, when they can, we can deter-
mine preferences over the ranked lotteries using only information about the ranking
of outcomes, and not the strength of the preferences over outcomes. For example, sup-
pose that

X = {LA, NYC, Miami}

and we know only that � satisfies IA and that

LA � NYC � Miami.

Then we cannot determine the DM’s ranking of the two lotteries in Figure 1.15
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Figure 1.15

LA

1/2

Miami

1/2

NYC

1

because it depends on how strongly the DM prefers LA to NYC and NYC to Mi-
ami. However, we can conclude that lottery P is preferred to lottery Q, in Figure 1.16,
because P f.o.s.d. Q.

Figure 1.16

P

LA

1/3

NYC

1/3

Miami

1/3

Q

LA

1/4

NYC

1/4

Miami

1/2

For this example, it probably was not obvious to you that P and Q could be made
to match the definition of first-order stochastic dominance, even though you found it
intuitive that P would be preferred to Q. Observe, however, that P and Q are equivalent
to P′ and Q′ in Figure 1.17.

Figure 1.17

P′

LA




LA




NYC




NYC




Miami




Q′

LA




NYC




NYC




Miami




Miami




I will explain how I found P′ and Q′, but you will only understand the procedure
if you try it out yourself. I started filling in branches of the tree from left to right. On
the left-most branch, I put the best outcome for each lottery, which happened to be
the same (LA) in this case. I gave the branch as much probability as I could without
exceeding the probability of the outcome for either lottery. This used up all the proba-
bility of LA for lottery Q but not for lottery P. Therefore, on the next branch I put LA
for lottery P′ and the next best outcome (NYC) for lottery Q′. I again gave this branch
as much probability as possible, without exceeding the probability of the respective
outcome for each lottery. In this case, since the first branch put probability 1/4 on LA
in P′ and the total probability of LA in P is 1/3, I could only put probability 1/12 on
the second branch. And so on. I could also have reversed the procedure, going from
the worst to best outcomes.

This procedure suggests the following criterion for determining f.o.s.d., which can
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be checked mechanically.

Proposition . Let X = {x , . . . , xn }, and (without loss of generality) assume that x �
x � · · · � xn . P weakly f.o.s.d. Q if and only if, for every k ∈ {, . . . , n}:

P(x ) + · · · + P(xk ) ≥ Q(x ) + · · · + Q(xk ). (1.5)

If equation (1.5) holds with strict inequality for k such that xk � xk+ , then P strictly f.o.s.d.
Q.

Note that, since the probabilities sum to 1, equation (1.5) is equivalent to6

P(xk ) + · · · + P(xn ) ≤ Q(xk ) + · · · + Q(xn ). (1.6)

In other words, we can either compare the cumulative probabilities of the worst out-
comes or of the best outcomes.

Let’s apply this criterion to the following two lotteries:

P: Roll of die: 1,6 5 2,3 4
One week in: Hoboken DC San Fran London

Q: Roll of die: Odd 2 4 6
One week in: Hoboken NYC San Fran London

Assume that

London � San Fran � DC � NYC � Hoboken .

Here are the values for equation (1.5):

x P
{

x ′ ∈ X | x ′ � x
}

Q
{

x ′ ∈ X | x ′ � x
}

London 1/6 1/6
San Fran 1/2 1/3

DC 2/3 1/3
NYC 2/3 1/2

Hoboken 1 1

Since the P(·) values are as high as the Q(·) values in each case, with strict inequality
in some places, P f.o.s.d. Q.

6. P(xk ) + · · · + P(xn ) can also be written P
{

x ∈ X | xk � x
}

, and P(x ) + · · · + P(xk ) can also be
written P

{
x ∈ X | x � xk

}
. Note that P

{
x ∈ X | xk � x

}
is like a cumulative distribution function for the

ordering on X induced by preferences. You are more likely to have seen the definition of first-order stochastic
dominance for the special case in which X is an interval of real numbers representing monetary payoffs and
the DM prefers more money over less. Suppose that lotteries P and Q have cumulative distribution functions
F and G, respectively. Then the criterion in equation (1.6) becomes F(x) ≤ G(x) for all x ∈ X. If X instead
represents costs, so that lower costs are preferred to higher costs, then the inequality is reversed: P weakly
f.o.s.d. Q if F(x) ≥ G(x) for all x ∈ X.
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Exercise 1.4. You are going to have pizza for dinner, and are trying to decide whether
to have to pizza delivered, or whether to pick it up yourself. In the end, all that matters
to you is how much the pizza costs and whether the pizza is hot or cold (e.g., the trip
to the parlor is irrelevant). The pizza costs $10. If it is delivered, you pay a $2 delivery
charge, unless the pizza is cold when it arrives, in which case the pizza and the delivery
are free. The pizza parlor delivers cold pizza 1 out of 50 times. If you decide to pick
the pizza up, there is no delivery charge. However, there is a 1 in 10 chance that you
will be late and the pizza will be cold. There is also a 1 in 100 chance (independent of
whether you are late) that you will be the 200th customer to go into the pizzeria today,
in which case the pizza is free.

a. Write your decision as a choice between two lotteries.

b. If I only know that you like hot pizza more than cold pizza (other things equal)
and cheap pizza more than expensive pizza (other things equal), can I determine your
ranking of the possible outcomes in the two lotteries? (Explain.)

c. Is there any ranking of the outcomes consistent with the above (hot better than cold,
etc) such that having the pizza delivered first-order stochastically dominates picking
up the pizza? (Explain.)

d. Give a ranking of the outcomes consistent with the above such that picking the
pizza up first-order stochastically dominates having the pizza delivered.

e. Give a ranking of the outcomes consistent with the above such that picking the
pizza up does not first-order stochastically dominate having the pizza delivered.

Exercise 1.5. Let Z be a finite set of money values, and let p and q be lotteries on Z.
Show that the following are equivalent:

1. For all z̄ ∈ Z: p(z ≤ z̄) ≤ q(z ≤ z̄).
2. For all z̄ ∈ Z: p(z ≥ z̄) ≥ q(z ≥ z̄).

Exercise 1.6. Suppose that you are considering insuring a piece of luggage. Given the
risks and the insurance premium quoted, you decide that you are indifferent between
getting and not getting the insurance. Then the airline offers you a “probabilistic” in-
surance policy. You pay the premium, as usual. If the luggage is lost, then with proba-
bility 1/2 you receive the value of the luggage, and with probability 1/2 your premium
is instead returned to you.

Suppose that your preferences satisfy the Independence Axiom. How do you rank
this probabilistic insurance compared to getting full insurance?

Notes and hints:

1. You should assume the premium is such that, if you know you have lost your lug-
gage then you prefer to be insured (e.g., the premium is lower than the value of
the luggage).
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2. You should answer this question drawing trees and applying the IA directly, rather
than using a utility representation.

3. As you should expect, you need to start by setting up the set of outcomes.

1.2.4 Continuity Axiom

Our next normative axiom is called the Continuity or Archimedean Axiom. In words:

There is nothing so good (or so bad) that it does not become insignificant if it
occurs with small enough probability.

Here is the formal statement:

Assumption . (Continuity Axiom) If P, Q ∈ L are such that P � Q, then for all
R ∈ L, there is α such that  < α <  and

P � ( − α)Q + αR

and there is β such that  < β <  and

( − β)P + βR � Q .

Finally, here it is in tree form. If P � Q and if lottery R is reached with small
enough probability (small α and β) in the compound lotteries in Figure 1.18, then P �
I and II � Q.

Figure 1.18
I

R

α

Q

 − α

II

R

β

P

 − β

To find a violation of the Continuity Axiom, we need to imagine a decision maker
for whom something is that bad or that good. For example, suppose X contains “death”
and some monetary outcomes:

X = {death, $, $1B}.

Suppose also that the decision maker always chooses the lottery with the lowest prob-
ability of death, but if two lotteries have the same probability of death, she chooses the
one with the highest expected monetary payoff.

To construct our formal counterexample to the Continuity Axiom, we need to find
lotteries P, Q and R such that P � Q and for every β such that  < β < , we have

Q � ( − α)P + αR . (1.7)
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R should be the “bad” thing, and so we let R be the lottery that yields death for sure.
Let P and Q be the lotteries that yield $1B and $100, respectively, for sure. Then P � Q
since neither puts any probability on death, but equation (1.7) holds because the lotter
( − α)P + αR puts positive probability on death whereas lottery Q does not.

You might be thinking that, with this counterexample, I am describing an often-
observed violation of the Continuity Axiom. Not true—in fact, the Continuity Axiom,
as technical as it may sounds, is quite sound empirically. Although people may talk
about how death is worse than anything, or about how they would pay any amount
of money to reduce the chance that children die in car accidents, in practice people
always accept a small chance of a terrible outcome in return for a high chance of greater
enjoyment or monetary return. For example, we risk our lives every day to go to work,
and we risk our children’s lives every day when we take them to school.

Exercise 1.7. Recall the maximin preferences defined in Exercise 1.2. Show that these
preferences violate the Continuity Axiom. (You will need a minor auxiliary assump-
tion.)

1.2.5 Expected Utility

Like WARP, the Independence and Continuity Axioms are consistency conditions that
help us analyze decision problems. Also like WARP, these axioms have the added ben-
efit of a representation of preferences that is very useful to modelers.

We already noted that with WARP, preferences � over lotteries have a utility rep-
resentation U : L → R, which is such that7

P � Q ⇐⇒ U (P) ≥ U (Q).

We now use the special structure of lotteries to decompose this utility representation
into probabilities and utility over outcomes.

Definition . Preference � over lotteries L satisfy expected-utility maximization if
there is a function u : Z → R such that, for any lotteries P and Q, P � Q if and only if

∑
z∈Z

P(z)u(z) ≥ ∑
z∈Z

Q(z)u(z).

If Z = {death, $100}, one’s notion of the “expected value of a lottery” does not
make sense. What is the average of death and $100? However, given a utility function
u : Z → R, which is a random variable, each outcome gets a utility value and we can
find the expected value of the utility for each lottery. For a lottery P, this expected value
is ∑z∈Z P(z)u(z), and is called the expected utility of P. A DM is an expected-utility
maximizer if, for some utility function u : Z → R, she always prefers the lottery with
the highest expected utility.

And now the anticipated punch-line:

7. WARP is sufficient for such a utility representation on any finite subset of lotteries.
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Theorem . (von Neumann–Morgenstern) If � satisfies the Independence and Conti-
nuity Axioms, then it satisfies expected-utility maximization.

This theorem is due to John von Neumann (who needs no introduction) and Os-
kar Morgenstern (a Princeton economist). Von Neumann and Morgenstern did not
invent expected utility maximization, but they were the first to derive it as a conse-
quence of consistency conditions on preferences over lotteries (while developing their
theory of games). Expected utility in this framework is often called “von Neumann–
Morgenstern (VNM) expected utility”, and the utility function u : Z → R is often called
a “von Neumann–Morgenstern utility function”.

The utility function in decision making without uncertainty only ranks alterna-
tives, whereas the VNM utility function also measures the strength of preferences over
outcomes. For example, suppose that the set of alternatives without uncertainty is

X = {LA, NYC, Miami},

and preferences over X are given by

LA � NYC � Miami .

Then here are two equally valid and equivalent utility representations of these prefer-
ences:

x U (x) V (x)

LA 1,000 1,000
NYC 2 999

Miami 1 1

The utility function U suggests that the preference of LA over NYC is much stronger
than the preference of NYC over Miami, whereas the utility function V suggest the op-
posite. However, both of these statements are meaningless, because only the ranking,
and not the actual utility values, are important. In fact, any strictly increasing (mono-
tonic) transformation of U or V is also a utility representation of �. For these reasons,
U and V are sometimes called ordinal utility functions.

Now suppose that the alternatives are lotteries over a set

X = {LA, NYC, Miami}

of outcomes. The functions U and V , as VNM utility functions, represent different
preferences over lotteries. For example, if an expected-utility maximizer’s VNM utility
function is U , then she prefers P over Q in Figure 1.19, but if it is V , then she prefers
Q over P.
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Figure 1.19

P

LA

/

Miami

/

Q

NYC



Because a VNM utility function measures strength of preference over outcomes, it
is sometimes called a cardinal utility function.

It is still true that VNM preferences over lotteries can be represented by many dif-
ferent VNM utility functions, but there is not as much freedom as with ordinal utility
functions. Instead, only positive affine transformations preserve the ranking of lot-
teries.8 If u : X → R is a VNM utility function, then v : X → R is a positive affine
transformation of u if there are numbers a >  and b such that v(x) = au(x) + b for
all x ∈ X. As an exercise, check that if v is a positive affine transformation of u, then
u and v induce the same preferences over lotteries.

Exercise 1.8. Let � be VNM preferences over lotteries L, represented by a VNM util-
ity function u : Z → R. Suppose v : Z → R is a positive affine transformation of u.
Show that v also represents the preferences �.

Exercise 1.9. A person you know (with an odd view about fun) points a revolver at
your head. It has six chambers and n bullets. He is going to spin the chambers and pull
the trigger for sure, but first he makes you an offer. If you give him a certain amount
of money, he will first remove one of the bullets.

Most people say that in such a situation, they would pay more if initially there were
a single bullet than if there were four bullets. That is, there is some number x of dollars
such that they would agree to pay x dollars to remove the bullet if n = , but they
would refuse to pay x to remove a bullet if n = .

The purpose of this problem is to show that such choices are inconsistent with
expected-utility maximization, assuming that (i) if you survive, you prefer more money
over less money (ii) if you die, you don’t care how much money you have. Don’t confuse
things by reading too much into the problem.

a. Within the VNM framework, what exactly are the two choice problems (involving
a total of four alternatives)? (Be explicit, which doesn’t mean verbose.)

b. Show directly that the choices violate the Independence Axiom.

c. Now show that the choices are inconsistent with expected utility maximization by
stating what the decisions mean for the utility function, and deriving a contradiction.

d. What is the intuition? Use the extreme case, where n = , as a way to illustrate the

8. This is often stated: “u is unique up to a positive affine transformation.”
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intuition.

Exercise 1.10. It is said of preferences over lotteries that satisfy expected utility maxi-
mization that they are “linear in probabilities”. That is, if U : L → R is a utility function
over lotteries that has an expected utility representation, then U is a linear function of
the probabilities of the outcomes. For concreteness, assume that the set of outcomes Z
has three outcomes, z, z and z. Each lottery can be specified by three numbers: the
probabilities p , p and p of the three outcomes.

a. Write down the mathematical definition of the set of lotteries, as a subset of R.
Given an example of an expected utility representation, and use it to explain that the
utility function over lotteries is linear in probabilities.

b. Draw the set of lotteries in R the best that your 3D-drawing skills allow. This set
should be a 2-dimensional triangle, even though it is sitting in R. It is called a simplex.

We can redraw the 2-dimensional triangle of lotteries flat on the page:
p = 

p =  p = 

For example, at the p =  vertex, the probability of z is 1 and the probability of the
other outcomes is zero. Along the side opposite this vertex, the probability of z is zero.
For all points in a given line parallel to this size, the probability of z is the same.

Specify two lotteries P and Q, and plot them on the simplex. Indicate the position
of the lottery (/)P + (/)Q, as defined in class.

For the utility representation you gave in Problem 1.10, draw two indifference
curves on the simplex.

1.3 States of nature and subjective expected utility

1.3.1 States, actions and outcomes

Reducing a decision problem under uncertainty to selecting among lotteries over out-
comes is a useful simplification if we are not interested in the source of uncertainty and
how a decision maker generates different lotteries. However, it is not a rich enough
model in many other cases.
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A richer model, which we call the “states-of-nature” model, has the following com-
ponents:

X = set of outcomes (what the DM cares about)

S = set of states (uncertain factors beyond the control of the DM)

A = set of actions (what the DM controls).

The outcome is determined jointly by the action and the state. (States are also called
states of nature or states of the world.) We can summarize this relation by a function
F : A × S → X, where F(a , s) is the outcome when the action is a and the state is s.

The specification of X, S and A in this richer model requires great care. This is the
subject of Sections 1.3.2 and 1.3.3.

1.3.2 From large worlds to small worlds

What do we mean by the state? A grand interpretation is that a state is a complete
specification of the past, present and future configuration of the world, except for those
details that are part of the DM’s actions. There is uncertainty because we do not know
which is the true configuration, and consider there to be many possible configurations.
S is the set of all such possible configurations.

A problem with this notion of state is that it is too grand. It contains more detail
than is manageable and necessary in applications. There are too many possible configu-
rations, and each one requires an infinite amount of information to specify. Therefore,
we prefer a coarser description of uncertainty that does not distinguish between all
possible states.

Let S∗ be the “grand” set of states. (Hopefully we can conceptualize S∗ even if we
cannot even mentally specify a particular grand state.) Although we cannot write down
a particular grand state, it is easy to specify some sets of grand states, such as the set
of all states in which it rains. A set E of states—that is, a subset E of S∗—is called an
event.

A set {E , . . . , En } of disjoint events whose union is S∗ is called a partition of S∗.
That is, {E , . . . , En } is a partition of S∗ if

1. E i ⊂ S∗ for all i ,
2. E i ∩ E j = ∅ for all i �= j , and
3. E ∪ E ∪ · · · ∪ En = S∗.

Stated yet another way, conditions (2) and (3) mean that each state belongs to one and
only one event in the partition.

We replace S∗ by a partition {E , . . . , En } of S∗ that is fine enough that, for each
event in the partition, it is not necessary to distinguish between the different states
in that event (for the decision problem being studied). That is, for every action, any
two states in the same event should result in the same outcome. The partition should
otherwise be as coarse as possible for the sake of simplicity. Events in this partition are
called elementary events.

Let’s consider the selection of a suitable partition of S∗ into elementary events for
modeling a particular decision problem. I have to decide whether to take a nap in my
office and, if so, for what time to set my alarm clock. Suppose that the alarm clock can
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only be set for multiples of 5 minutes, and it is now 3:15. I want to sleep for at most 20
minutes, but I am trying to decide whether to set the clock for an earlier time because
my boss might walk into the office. I care about how long I sleep, except if my boss
walks in, in which case I feel equally lousy however long I have slept.

Let’s start by writing down the sets of actions and of outcomes:

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a = do not sleep
a = set alarm for 5 minutes
a = set alarm for 10 minutes
a = set alarm for 15 minutes
a = set alarm for 20 minutes

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x = do not sleep
x = sleep 5 minutes
x = sleep 10 minutes
x = sleep 15 minutes
x = sleep 20 minutes
x = awakened by boss

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

I will now propose a collection E of elementary events that is flawed, and then we
will see how to fix it. E consists of these five events:

E =
{

s ∈ S∗ | boss enters in next 5 minutes
}

E =
{

s ∈ S∗ | boss enters in next 10 minutes
}

E =
{

s ∈ S∗ | boss enters 10 to 15 minutes from now
}

E =
{

s ∈ S∗ | boss does not enter in next 15 minutes

and is eating a bagel now
}

E =
{

s ∈ S∗ | boss does not enter in next 20 minutes

and is not eating a bagel now
}

Before reading further, carefully examine these five events and look for reasons
why they are not a good set of elementary events for this problem. You should be able
to find at least four reasons.

Two of the reasons have to do with the fact that the events do not form a partition.
The other two have to do with the coarseness/fineness of the events. Let’s start with
the partition problems, since if the events do not form a partition, the model will be
mathematical nonsense.

Problem . E is not a partition because events E and E intersect. They both contain
the states in which the boss enters in the next 5 minutes.

Solution. We can modify E to eliminate the overlap:

E ′
 =

{
s ∈ S∗ | boss enters 5 to 10 minutes from now

}
.

Problem . E is not a partition because the union of the events does not include all
the states. States in which my boss enters 15 to 20 minutes from now and is not eating
a bagel do not lie in any of the events.
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Solution. We can expand E to include the missing states:

E ′
 =

{
s ∈ S∗ | boss does not enter in next 15 minutes

and is not eating a bagel now
}

.

Problem . The partition is too fine. For the decision problem, there is no need to
distinguish between states in which my boss is eating a bagel and states in which he is
not. (This is the only one of the four problems that is not critical. We fix this problem
for the sake of simplicity only.)

Solution. We can combine events E and E ′
, replacing them by

E ′
 =

{
s ∈ S∗ | boss does not enter in next 15 minutes

}
.

Problem . The partition is too coarse. For the decision problem, states in which my
boss enters 15 minutes from now and states in which she enters 22 minutes from now
all lie in E ′

, but lead to different outcomes if I set my alarm for 20 minutes.

Solution. We can divide E ′
 into two events:

E ′′
 =

{
s ∈ S∗ | boss enters 15 to 20 minutes from now

}
E ′′

 =
{

s ∈ S∗ | boss does not enter in next 20 minutes
}

.

In summary, here is a proper set of elementary events for this decision problem:

E  =
{

s ∈ S∗ | boss enters in next 5 minutes
}

E ′
 =

{
s ∈ S∗ | boss enters 5 to 10 minutes from now

}
E =

{
s ∈ S∗ | boss enters 10 to 15 minutes from now

}
E ′′

 =
{

s ∈ S∗ | boss enters 15 to 20 minutes from now
}

E ′′
 =

{
s ∈ S∗ | boss does not enter in next 20 minutes

}
.

Since we will not be “peeking inside” elementary events, we can simplify terminol-
ogy and notation by thinking of each event as a “point” rather than a set, calling each
elementary event a state, and letting S be the set of these “small-worlds” states.

We will be using probability measures on S. We should make sure that this con-
struction of S does not screw up the use of probability. To simplify the mathematics
of this discussion assume (here only) that S∗ is finite. Let E = {E , . . . , En } be a parti-
tion of S∗ into elementary events, and let S = {s , . . . , sn } be the corresponding set of
states. A subset E ⊂ S is also called an event, and it corresponds to an event in S∗. For
example, the event {s , s , s } ⊂ S corresponds to the event E ∪ E ∪ E.

Let the set S∗ of grand states have a probability measure π∗ : S∗ → R that specifies
the probability of each state. The probability of an event E ⊂ S∗ is π∗(E) = ∑s∈E π∗(s).
Recall that π∗ has the following properties:

1.  ≤ π∗(s) ≤  for all s ∈ S∗.
2. ∑s∈S∗ π∗(s) = .
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I will now show that there is a probability measure π : S → R on S that is consistent
with π∗. Define π(si ) = π∗(E i ). For E ⊂ S, define π(E) = ∑s∈E π(s). You can verify
that π(E) is equal to the probability of the corresponding event in S∗. Furthermore,

∑
s∈S

π(s) = π∗(E ) + . . . + π∗(En ) = ,

since {E , . . . , En } is a partition. Hence, π is also a probability measure.
From now on, the story of the grand state need only lurk in the background. When

writing down a model, or thinking about a decision problem, we simply say “The set
S of states is ….”

1.3.3 Outcomes and state-independent preferences

For defining the set X of outcomes, we have two options. One is to adopt the definition
of outcome from our model of lotteries: an outcome is everything the decision maker
cares about and that is potentially affected by his action in the decision problem being
studied. Sometimes this involves repeating information about the state that affects the
DM’s preferences. In this case, it is sometimes simpler to omit this information from
the outcomes.

For example, suppose the decision problem is to choose a contract for provision of
heart surgery, which might be contingent on whether you have a heart attack. The set
of states is

S = {heart attack, no heart attack}.

Consider the following two sets of outcomes:

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = heart attack, heart surgery
x = heart attack, no heart surgery
x = no heart attack, heart surgery
x = no heart attack, no heart surgery

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

X∗ =

{
x∗

 = heart surgery
x∗

 = no heart surgery

}

Outcomes in X include everything you care about. Outcomes in X∗ omit whether you
have a heart attack, but this information is not lost because it is part of the states.

Preferences over outcomes in X are state independent. Although having a heart at-
tack may affect the likelihood of outcome x , how you feel about having a heart and
heart surgery does not depend on whether you have a heart attack. If you find the
last sentence nonsensical, it will help to imagine the following hypothetical scenario.
Suppose that there is a special device that can “undo” a heart attack (including all the
pain and bad memories) if you do have one, and can induce a heart attack if you do
not. Then any outcome in X is feasible for either state in S. You can now ask your-
self the following question: Does the way feel about having a heart attack and heart
surgery depend on whether or not you naturally had a heart attack? I think it is a
plausible approximation that it does not. In this hypothetical scenario, the uncertainty
about whether you have a heart attack is simply a randomization device that generates
lotteries.
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In contrast, preferences over outcomes as defined in X∗ are state dependent. That
is, how you feel about having heart surgery depend on whether you have had a heart
attack. (This requires no explanation.)

Which is the best way to set up a model? Sometimes, preferences are naturally state
independent. For example, if you are speculating on the Zimbabwean dollar, and you
do not live in Zimbabwe or have other connections with the Zimbabwean economy,
then presumably you only care about the Zimbabwean exchange rate in so far as it
affects the return on your transactions. We can let the set of outcomes be your net
profit, and preferences are state independent.

On the other hand, in the heart-attack problem, preferences are naturally state de-
pendent. We can still define outcomes rich enough so that preferences are state in-
dependent. This requires adding and repeating information about the state in the de-
scription of the outcomes, but allows us to distinguish between the state of nature as
purely a source of uncertainty and the state of nature as something that directly af-
fects our lives. We will use both state-dependent and state-independent preferences,
depending on which leads to a simpler and more intuitive model. A common case in
which we will have state-dependent preferences is in insurance models, or other mod-
els in which it is convenient to think of outcomes as monetary returns or commodity
trades, over which preferences are state dependent.

1.3.4 Objective expected utility

The decision maker’s problem is to choose an action from A. Every action a ∈ A leads
to a mapping x̃a : S → X from states to outcomes, which is defined by

x̃a (s) = F(a , s).

Such a mapping is called an act. Our first assumption is that the decision maker cares
about the act induced by an action, rather than the action itself. Rather than a behavior
assumption, this is requirement on how we set up the model. We are supposed to have
defined the outcomes so that they include any aspects of the action that the decision
maker cares about.

Suppose that there is an objectively ascertained probability measure π : S → R on
the set of states. That is, π can be determined by some frequentist approach to statistics
and all parties agree that π measures the probability of each state. For example, this is
true if the state is the number that comes up on a roll of a die, or is this week’s winning
lottery number.

Each act x̃ : S → X then induces a probability distribution P : X → R on the set of
outcomes, defined by

P(x) = ∑
s∈x̃− (x)

π(s).

That is, x̃− (x) is the set of states that leads to outcomes x, and P(x) is the probability
that the true state lies in this set. In statistics, x̃ is called a random object and P is called
the distribution of x̃.

Suppose that preferences over money are state independent. Then a distribution
P of an act x̃ is a lottery over outcomes and you rank acts the way you would rank
their distributions as lotteries. In particular, you are indifferent between any two acts
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with the same distributions. Preferences over acts thereby reduce to preferences over
lotteries, and we can turn to VNM expected utility. Let u : X → R be the decision
maker’s VNM utility function. The expected utility of an act x̃ : S → X is

∑
s∈S

π(s)u( x̃(s)).

In this expression, x̃(s) is the outcome in state s, and u( x̃(s)) is the utility of this
outcome.

Suppose instead that preferences are state dependent. We can still use VNM ex-
pected utility theory, but we have to construct a set X̂ of outcomes that fit the state
independence assumption of VNM expected utility. The state and outcome together
describe everything the DM cares about, and so we let X̂ = X × S. A typical “outcome”
is 〈s , x〉. Each act x̃ : S → X induces a probability measure P : X̂ → R on X̂, defined
by

P(x , s) =

{
π(s) if x̃(s) = x

 otherwise.
(1.8)

We again assume that the DM’s preferences over lotteries over X̂ satisfy the VNM ex-
pected utility maximization, and let u : X̂ → R be the VNM utility function. The
expected utility of an act x̃ : S → X is

∑
s∈S

π(s)u( x̃(s), s).

In this expression, x̃(s) is the outcome in state s, and u( x̃(s), s) is the utility of this
outcome in state s.

This derivation of expected utility for state-dependent preferences makes some
people uncomfortable. Many of the lotteries over X̂ may be impossible. For example,
it is difficult to generate casino-style gambles in which the prizes include earthquakes
in California. Hence, the choices from a subset of hypothetical lotteries are themselves
hypothetical. We have to assume that the DM can reasonably consider such hypothet-
ical choices.

1.3.5 Subjective expected utility

Suppose that there is no objective probability measure on the set of states. For example,
what is the probability that Candidate Zorg will win the next election? There is much
room for disagreement, and we will not be able to convince each other about the correct
answer to this question. How do we represent preferences over acts in this case?

The short answer is that we assume that the DM has subjective beliefs, which are
given by a probability measure π : S → R, and then behaves like an expected utility
maximizer as described in the previous sections. Such behavior is called subjective
expected utility (SEU) maximization.

If this book were just about decision theory, I would instead derive subjective ex-
pected utility maximization from consistency conditions on preferences over acts. This
derivation was first accomplished by Leonard Savage, who used decision theory to pro-
vide a foundation for statistics.9 However, we must press on if we are to reach multi-
agent economic models.

9. Rather than the other way around!
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Subjective expected utility is even more contentious then VNM expected utility.
First, any violation of VNM expected utility maximization is a violation of SEU, since
objective expected utility is a special case of SEU. In addition, the formulation of sub-
jective beliefs clearly complicates the decision problem and makes our normative model
further removed from actual behavior. There are even very simple situations in which
people do not act as if they had probabilistic beliefs over the states.

Exercise 1.11. Maximin preferences are appealing in the states-of-the-world frame-
work because beliefs about the relative likelihood of events is not important. A deci-
sion model that does involve the likelihood of events but does not involve “arbitrary”
subjective beliefs is the “principle of insufficient reason”. According to this model, in
situations in which the probability of events cannot be objectively determined, the de-
cision maker assigns each state equal probability, and then acts as an expected utility
maximizer. For example, if there are three states, “sunny”, “cloudy” and “rainy”, then
each state has probability 1/3. Show that the principle of insufficient reason can lead to
different decisions for the exact same decision problem depending on how the modeler
or decision maker chooses to specify the set of states. This requires a simple example
and a clear explanation.

1.3.6 Statewise dominance

In the state-of-nature model, there is a criterion that is related to but stronger than first-
order stochastic dominance. We call it statewise dominance, or simply dominance.

An act x̃ dominates another act ỹ if it results in a better outcome in every state. We
again write x � y for x , y ∈ X if the sure outcome x is preferred to the sure outcome
y. Then x̃ weakly dominates ỹ if x̃(s) � ỹ(s) for every s ∈ S. If also x̃(s) � ỹ(s) for
some s ∈ S, then x̃ (strictly) dominates ỹ.

If x̃ dominates ỹ, then the lottery induced by x̃ first-order stochastically dominates
ỹ no matter what is the probability measure on S (as long as all states get positive
probability—otherwise we may only get weak f.o.s.d.). Hence, dominance is an espe-
cially useful criterion when uncertainty is subjective, because the ranking of x̃ and ỹ
does not depend on beliefs. However, because it is stronger, it is also less frequently
applicable than f.o.s.d. For a particular probability measure on S, an act x̃ may f.o.s.d.
ỹ even though it does not statewise dominate ỹ.

Exercise 1.12. Here are some decision theories for the Savage setup (states of the
world without objective uncertainty) that differ from Subjective Expected Utility the-
ory:

Maximin For each action, there is a worst-case (worst over all possible states).
Choose the action whose worst-case is the best.

Maximax For each action, there is a best-case (over all possible states). Choose the
action whose best-case is the best.

Minimax regret For each action you choose, and each state that occurs, there might
be some other action you wish you had chosen. The difference between the utility you
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would have gotten in the state if you had chosen the best action, and the utility you
actually got given the action you chose, is called the regret for that state and action.
Now, for each action, there is a worse-case in terms of regret, i.e., a maximum regret
over all possible states. Choose the action whose maximum regret is the lowest.

Insufficient reason If you don’t know the objective probabilities of the states, then
you should simply place the same probability on each state. Then choose the action
that maximizes expected utility given this probability distribution.

a. Consider the following payoff matrix, where the numbers are “utility” payoffs:

States
s s s

a   
Acts a   

a   

What decision (choice of an action) does each decision rule listed above lead to? Ex-
plain in each case.

b. Replace the entries in the payoff matrix by arbitrary prizes. Suppose you only know
the person’s ordinal preferences over (relative ranking of) prizes. For which of the
decision rules given above is this enough information to deduce the person’s choice?
Explain.

c. Explain why one might say that maximin is a pessimistic decision rule, and that
maximax is an optimistic decision rule.

d. Explain why the insufficient reason decision rule is sensitive to the specification
of the states (e.g., to whether you consider “rain” to be a singe state of the world, or
distinguish between “rain in the morning only” and “rain all day”).

e. Pick one of the decision rules, and compare it to SEU, including your own subjective
view on which is better.



Chapter 2

Choosing when there is new
information

2.1 Representing information

2.1.1 Information as an event

In the Introduction, I stated that uncertainty and information are inexorably linked.
We have modeled decisions under uncertainty in which the decision maker’s infor-
mation is constant in the course of the decision problem. Now we consider decision
problems during which new information is revealed. This is one case where we need
the states-of-nature model. That model allows a surprisingly general—though by no
means universal—representation of information.

Consider a piece of information, such as “it rained yesterday in Milwaukee”. How
does it fit into our states-of-nature model? A first answer is that it causes our beliefs to
change. This is true, but we want a representation of this information that provides a
simple rule for changing beliefs.

Let us return, for a moment, to the “grand” set of states S∗. Imagine that we list
every possible statement about the world. In a particular state, each of these statements
is either true or false. (In fact, we can think of a state S∗ as just a list of the truth values of
each of these statements.) For example, in each state the statement “It rained yesterday
in Milwaukee” is either true or false. Let E be the set of states in which it is true. By
learning the statement, what we have learned—and all we have learned—is that the
true state is in E and not in the complement of E. Therefore, we can represent the
contents of a piece of information by an event E ⊂ S∗.1

2.1.2 Setting up the small-worlds model correctly

Even if you believe every sentence that I wrote in the previous subsection, you may not
find such a representation of information intuitive and general. Does not information
usually make you change your beliefs about states in a smooth way, rather than simply
ruling out the possibility of certain states?

Our theory can represent such partial information as long as we set up the right
small-worlds state space for the situation we have in mind. We must choose elemen-
tary events that are fine enough that our information does not allow us to distinguish
between two large-worlds states that are in the same elementary event. I illustrate this
with an example.

1. Remember that the definition of an event is a subset of the set of states. Only the context in which the
term is used can impute further meaning to the term.

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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Consider the following decision problem, told from the point of view of a woman.
You are thinking about inviting a man named Homer to the movies. Homer will accept
the invitation if and only if he likes you, but you are not sure about this. Getting turned
down is a worse outcome for you than not inviting Homer at all. Here is how, according
to Section 1.3, we would define the actions, states and outcomes in a small-worlds
model of the decision problem:

(actions) A =

{
a = invite Homer

a = not invite Homer

}
,

(states) S =

{
s = he likes me

s = he likes me not

}
,

(outcomes) X =

⎧⎪⎨
⎪⎩

x = invitation declined

x = invitation accepted

x = no invitation

.

⎫⎪⎬
⎪⎭

Now suppose that you passed Homer in the street this morning and he smiled
at you. This might tell you something about whether Homer likes you, even though
Homer sometimes smiles at people he does not like and sometimes does not smile at
people he likes. How can we represent this information?

If it can be represented as an event in our model, we just have to check which event
corresponds to this information. Because there are only two states, there are only four
events (only four subsets of S):

∅ , {s } , {s } , {s , s }.

Remember that the interpretation of an event E as information is that “all I have learned
is that the true state is in E”. The null event ∅ does not make sense as information—
there is something wrong with the model if you learn that the true state is in ∅, and
hence does not exist! The event {s } does not correspond to your information, because
you still consider s possible. We rule out {s } in the same way. The event {s , s } seems
like the best pick: you still consider s and s possible, and so it is true that you know
that the true state is in {s , s }. However, you knew this before you saw Homer smile.
If this is truly all that the smile tells you, then you have learned nothing and have no
basis for changing your beliefs about s and s.

The problem is that the elementary events we chose for our small-worlds model
are not fine enough to allow the representation of this information. Your information
allows you to distinguish between grand states in which Homer likes you and smiles
and grand states in which Homer likes you and does not smile, but these two states lie
in the same elementary event.

We solve this problem by enriching the set of states:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s = he likes me and smiles

s = he likes me and does not smile

s = he does not like me and smiles

s = he does not like me and does not smile

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.
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Figure 2.1

s

s

s

s

3/8

1/4

1/8

1/4

Yes

No

Yes No
Likes me

Smiles

︸ ︷︷ ︸ ︸ ︷︷ ︸
A A

(payoff-relevant events)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⎫⎪⎪⎪⎬
⎪⎪⎪⎭

E 

E

(
Information

events

)

Enriched state space for example. Shows partition {A , A } of S into payoff-relevant
events and partition {E  , E } of S into information events. Prior probability of each state
is written in lower-right corner of cell.

See also the taxonomy in Figure 2.1. Homer’s smile then provides you with the infor-
mation {s , s }, which we denote by E.

2.1.3 Conditional beliefs

We now assume that you—as an unboundedly rational decision maker—react to this
information by updating your prior beliefs, and then maximizing expected utility using
your posterior beliefs. Your state-independent or state-dependent utility function over
outcomes does not change. However, the change in beliefs may cause your preferences
over acts and actions to change.

Let π : S → R (a probability measure) be your prior beliefs. For s ∈ S, denote by
π(s | E) your posterior beliefs given that you have learned that the true state is in E.
π(· | E) : S → R is also a probability measure.

Figure 2.1 shows prior beliefs for the example. According to these prior beliefs you
consider s to be 3 times more likely than s (since π(s ) = / and π(s ) = /).
After you learn only that the true state lies in E = {s , s }, you should still consider
s to be 3 times more likely than s. However, you now consider states s and s to be
impossible. The probabilities in your posterior beliefs should still sum to 1. Hence, we
need to rescale the probabilities of s and s by dividing them by the prior probability
of {s , s }, so that π(s | E ) = / and π(s | E ) = /.

The general rule is

π(s | E) =

⎧⎨
⎩

π(s)
π(E)

if s ∈ E ,

 otherwise.
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For an event A ⊂ S, the conditional probability is

π(A | E) = ∑
s∈A

π(s | E) = ∑
s∈A∩E

π(s | E)

= ∑
s∈A∩E

π(s)
π(E)

=
∑s∈A∩E π(s)

π(E)
=

π(A ∩ E)
π(E)

.

This formula,

π(A | E) =
π(A ∩ E)

π(E)
,

is called Bayes’ Rule.
Suppose that

u(invitation declined) = ,

u(invitation accepted) = ,

u(no invitation) =  
 .

The action “invite Homer” leads to the act x̃(s ) = x̃(s ) = x and x̃(s ) = x̃(s ) = x.
The action “not invite Homer” leads to the act ỹ(s ) = ỹ(s ) = ỹ(s ) = ỹ(s ) = x.
The expected utility of ỹ is always  

 . The expected utility of x̃ for the prior beliefs is(



)
 +

(



)
 = 




.

Hence, “not invite” is chosen over “invite” if you do not have any information. How-
ever, if Homer smiles at you, then the expected utility of f for your posterior beliefs
is (




)
 +

(



)
 = .

Hence, you prefer the action “invite”.

2.1.4 Information as a partition

Compare the statements “Homer smiled at me this morning” and “this morning I will
see whether Homer smiles at me”. The latter statement describes, from a point of view
prior to observing your information, the possible things you will learn. This is called
an information structure. The former describes, from a point of view posterior to ob-
serving your information, what you actually learned. This is called a realization of your
information; it is also what I have called a “piece of information”. (I will frequently refer
to both as just “information”, when no confusion will arise.)

Let’s consider how we would represent an information structure. For each state s,
let I (s) be the set of states you consider possible after observing your information. In
our example, in states s and s, Homer does not smile at you and so you consider
{s , s } to contain the possible states. Hence:

I (s ) = {s , s },

I (s ) = {s , s },

I (s ) = {s , s },

I (s ) = {s , s }.
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If we take all the events on the right, and eliminate duplicates, then we end up with
this partition of the set of states:

{{s , s } , {s , s }}.

In each state s, the set of states that you consider possible is the event in the partition
that contains state s. That is, seeing whether Homer smiles tells you which event in the
partition contains the true state.

I now claim that for an unboundedly rational agent who is aware of her informa-
tion, information should be partitional as long as we have specified the model properly.
Let me illustrate this using a related example. Suppose that Homer smiles if and only
if he likes you and you are aware of this fact (at least if you think about it). Then we
can return to the simpler set of states:

S =

{
s = likes me,

s = likes me not.

}

Seeing whether Homer smiles at you tells you exactly which is the true state (I (s ) =
{s } and I (s ) = {s }), and hence can be represented by the partition {{s } , {s }} of S.
Consider instead the following non-partitional information structure:

I (s ) = {s },

I (s ) = {s , s }.

Try to think of a story that almost fits the model and this information structure, and
then try to see how the story has an inconsistency, at least for an unboundedly rational
decision maker who is aware of her information.

For example, this information structure fits the following story. In state s, Homer
smiles at me, and I think to myself: “Ahah! He smiled and this means he likes me for
sure.” In state s, Homer does not smile at me, but I do not think anything of it. Even
though I know that Homer would smile at me if he liked me, I fail to draw the proper
conclusion from the lack of a smile, and so still I consider states {s , s } to be possible,
just as I did before walking by Homer. You can probably imagine this kind of thing
happening to you, but the story relies on incomplete reasoning, and hence bounded
rationality, which we are not incorporating into our normative model.2

2.2 Bayes’ Theorem

2.2.1 The observation of information and updating of beliefs

We can give a nice tree representation of the observation of information and the up-
dating of beliefs.

2. As stated in Section 1.1, we use normative models as approximations for descriptive and prescriptive
models because of their simplicity. As we moved from lotteries, to states with objective uncertainty, to states
with subjective uncertainty, and to information and Bayesian updating, the decision problems have become
more and more complex and the healthy level of scepticism of the realism of the normative model becomes
higher and higher.
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Figure 2.2
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Unconditional
probabilities of
information events
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Conditional
probabilities of
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Conditional probabilities for the example.

We are given a set S of states with beliefs π : S → R. We partition the set of states
in two ways:

1. Let {A , . . . , Am } be a partition of the states into events that you care about. If
there was no information, this would be a suitable collection of elementary events.
In the example shown in Figure 2.1, this partition is {A , A }, where A = {s , s }
and A = {s , s }.

2. Let {E , . . . , En } be a partition of the states into events that you can distinguish with
your information. In the example, this partition is {E , E }, where E = {s , s }
and E = {s , s }.

We can calculate the probability of each event in {A , . . . , Am } conditional on each
event in {E , . . . , En }. For the example, we have

π(A | E ) = / π(A | E ) = /
π(A | E ) = / π(A | E ) = /.

We can also calculate the probability of observing each information event. For the
example, we have

π(E ) = / π(E ) = /.

(π(E ) is the unconditional probability that Homer smiles at you.) We can then draw
the tree shown in Figure 2.2.

The first tier below the root has a node for each information event, and the proba-
bility of each of these events is drawn on the corresponding branch. The terminal nodes
of each subtree are the payoff-relevant events. The branch to each node is labeled with
the probability of the payoff-relevant event conditional on the subtree’s information
event. In general, the tree has the form shown in the bottom of Figure 2.4.

We worked with trees like this before, as compound lotteries. However, our cal-
culations went in the opposite direction. When finding the reduced lottery of a com-
pound lottery, we were given the probabilities of intermediate events and probabilities
of outcomes conditional on these events, and we calculated first the probability of each
terminal node and then the overall probability of outcomes that appeared at several
terminal nodes. Here, we instead start with a probability measure on the set of states
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Figure 2.3
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Conditional probabilities of information events for example.

and calculated probabilities of intermediate events and probabilities of outcomes con-
ditional on these events.

It is common to have to perform both of these calculations. This happens when
you are given information about probabilities in a tree form, which shows the proba-
bility of each information event conditional on the payoff-relevant events. Calculating
the probabilities of each payoff-relevant event conditional on the information events
involves “inverting” the tree. In our example, suppose that instead of being given a
table of probabilities about each state as in Figure 2.1, you are told the probability that
Homer does or does not like you, and then the probability that Homer smiles at you
given that he likes you or does not like you. These probabilities are shown in Figure 2.3.

To apply Bayes’ Rule for calculating the probability of A conditional on E,

π(A | E ) =
π(A ∩ E )

π(E )
,

we first have to find the unconditional probability of E:

π(E ) = π(A )π(E | A ) + π(A )π(E | A )

= (/)(/) + (/)(/)

= /.

In general, the information takes the form shown in the top of Figure 2.4. To cal-
culate the conditional probabilities shown in the bottom of Figure 2.4 from the condi-
tional probabilities shown in the top of Figure 2.4, we first calculate the probability of
each terminal node Ai ∩ E j :

π(Ai ∩ E j ) = π(Ai )π(E j | Ai ).

Then we sum those terminal nodes for E j to find the overall probability of E j :

π(E j ) =
m

∑
i=

π(Ai ∩ E j ) =
m

∑
i=

π(Ai )π(E j | Ai ).
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Figure 2.4

A tree showing unconditional probabilities of payoff-relevant events {A , . . . , Am },
and conditional probabilities of information events {E  , . . . , En }:

A

π(A )

E  E

. . .

. . .

En

A

π(A )

E 

π(E  |A )

E

. . .

. . .

En

π(En |A )

. . .

. . .

. . .

. . .

Am

π(Am )

E  E

. . .

. . .

En

(
This node is the event A ∩ En . The probability
of this node is π(A ∩ En ) = π(A )π(En |A ).

)

A tree showing unconditional probabilities of information events {E  , . . . , En },
and conditional probabilities of payoff-relevant events {A , . . . , Am }:

E 

π(E  )

A A

. . .

. . .

Am

E

π(E )

A

π(A |E )

A

. . .

. . .

Am

π(Am |E )

. . .

. . .

. . .

. . .

En

π(En )

A A

. . .

. . .

Am

(
This node is the event A ∩ En . The probability
of this node is π(A ∩ En ) = π(En )π(A |En ).

)

Bayes’ Theorem involves calculating the conditional probabilities shown in the bottom
tree from the conditional probabilities shown in the top tree.



Bayes’ Theorem 41

Now we apply Bayes Rule to find the probability of Ai conditional on E j ;

π(Ai | E j ) =
π(Ai ∩ E j )

π(E j )
=

π(Ai )π(E j | Ai )
∑m

k= π(Ak )π(E j | Ak )
. (2.1)

This formula is called Bayes’ Theorem. Note that all the steps only involve Bayes’
Rule. Bayes’ Theorem is just an application of the basic formula for conditional prob-
abilities to a particular way in which the probability information is presented.

2.2.2 An application of Bayes’ Theorem

Although Bayes’ Theorem is just an application of conditional probabilities, the con-
clusions one obtains when using it are sometimes surprising.3

Here is a standard application of Bayes’ Theorem. Suppose that you know that 5%
of the population has HIV, and you have a test for detecting HIV that produces (type 1
and type 2) errors 5% of the time. If we draw someone randomly from the population
and the person tests positive for HIV, what is the probability that the person has the
virus?

The payoff relevant partition is{
A = “No HIV”

A = “HIV”

}
.

The information partition is {
E = “Test −”

E = “Test +”

}
.

We are given, for example, π(A ) = ., and π(E | A ) = .. We can show these
probabilities in tree form, as in Figure 2.5.

Figure 2.5

Condition

Test result
(Prob. of node)

No HIV

0.95

Test −
(0.9025)

0.95

Test +
(0.0475)

0.05

HIV

0.05

Test −
(0.0025)

0.95

Test +
(0.0475)

0.05

The terminal nodes are the events Ai ∩ E j , which can be our elementary events or
states.

We are asked to find the probability that a person has the virus, conditional on
testing positive. This information is part of the tree in Figure 2.6.

3. The fact that the answers can surprise people is yet more evidence that people are not perfect Bayesians!



42 Choosing when there is new information Chapter 2

Figure 2.6
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No HIV
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π(Test +)

No HIV

π(No HIV | Test +)

HIV
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Recall the formula for conditional probability:

P[Has HIV | test +] =
P[Has HIV and tests +]

P[tests +]
.

We were not told directly the probability that a person would both have HIV and test
positive, but this is easy to calculate from the tree:

P[Has HIV and tests +] = P[Has HIV]P[Tests + |Has HIV]

= (.)(.) = ..

That is, to find the probability of a state, we multiply the probabilities along the branches
that lead to that state. All such probabilities are shown below the terminal nodes in the
tree.

We were also not told directly the probability that a person would test positive. We
have to sum the probabilities of all the states in which a person tests positive, calculating
the probability of each state in the same way.

P[tests +] = P[Has HIV and tests +] + P[No HIV and tests +]

= (.)(.) + (.)(.) = ..

Hence,
P[Has HIV | test +] =

.
.

= ..

In this example, the surprise is that the small error from the test grew into much un-
certainty about whether the person has HIV, due to the fact that few people in the
population actually have the virus. Most people if they had to answer the original
question quickly, without performing the calculations of Bayes’ Theorem, would give a
higher answer than /. The test still provided significant information, because before
the test the probability that the person had HIV was only 0.05.

We can calculate other probabilities and conditional probabilities in the same way.
This gives us the inverse of the tree in which we were given initially given the proba-
bilities in Figure 2.7.
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Figure 2.7

Test result

Condition

Test −

0.905

No HIV

0.9972

HIV

0.0028

Test +

0.095

No HIV

0.5

HIV

0.5

2.2.3 Setting up the right state space: Example 1

Here is an application of Bayes’ Theorem involving subjective uncertainty. There are
three prisoners—Larry, Mo, and Curly—in different cells of a prison (in different cells).
One of them will be executed, but Larry does not know which one. His subjective
beliefs put equal probability on each prisoner. He asks the prison guard to tell him
who will be executed. The prison guard replies that he will only tell Larry the name
of one of the other prisoners (Mo or Curly) who will not be executed. Larry says OK,
and the prison guard tells him that Mo will not be executed. Larry reasons that he
has just learned that either he or Curly will be executed. Since it is equally likely that
he or Curly will be executed, he figures that the probability of his execution has just
increased from 1/3 to 1/2!

Larry’s reasoning seems faulty, because the guard was going to name one of the
prisoners no matter what. How could the guard’s reply provide any information about
whether Larry would be executed? The correct conditional probability must be 1/3.
But this means that the conditional probability that Curly will be executed has gone
from 1/3 to 2/3. How do we convince Larry of these facts? How do we explain the
source of his error? How do we explain why the guard’s reply provides no information
about Larry’s choice of execution, but does provide information about Curly’s chance
of execution?

Let’s first come up with a (faulty) model that might lie behind Larry’s calculations.
He appears to be using (implicitly or explicitly) a model in which there are three states,
identified by the initial of the person who will be executed:

S = {L, M, C}.

His prior beliefs are
π(L) = π(M) = π(C) = /.

He reasons that the guard’s reply tells him that the true state is in the event {L, C}.
Applying Bayes’ Rule,

π(L | { L, C}) =
π(L)

π({L, C})
=




,

he calculated that the conditional probability of his execution is 1/2.
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Let’s check the information structure. By Larry’s reasoning, when the state is “Mo,”
the guard says “Curly,” and Larry’s information is {L, C}. That is:

I (M) = {L, C}.

By the same reasoning,
I (C) = {L, M}.

Already we are in trouble. The information sets {L, C} and {L, M} are neither dis-
joint nor equal, and hence cannot be part of a partition. There is further trouble when
we try to define I (L). The information set in each state should be uniquely defined in
a proper model. However, when the state is Larry, the guard might say Mo or Curly,
and so Larry might think his information set is {L, C} or {L, M}.

This suggests that Larry’s set of states is not rich enough. The original set of states
(elementary events) given above can be the partition of the states into payoff relevant
events: ⎧⎪⎨

⎪⎩
L = Larry

M = Mo
C = Curly

⎫⎪⎬
⎪⎭ .

The informational events are identified by the guard’s reply, and are identified with the
lower case initial of the name: {

m = Mo
c = Curly

}
.

We know the prior probabilities of who will be executed. The probabilities of the
guard’s reply conditional on who will be executed are straightforward (or are they?).
For example, the probability that the guard says “Curly” when Mo is to be executed is 1;
if Larry is to be executed, then the guards says “Mo” or “Curly” with equal probability.
These probabilities are shown in Figure 2.8.

Figure 2.8

Executee

Guard’s reply
(Prob. of node)

L

1/3

m
(1/6)

1/2

c
(1/6)

1/2

M

1/3

m
(0)

0

c
(1/3)

1

C

1/3

m
(1/3)

1

c
(0)

0

Then the probability that Larry will be executed conditional on the guard’s replying
“Mo” is

π(L | m) =
π(L ∩ m)

π(m)
=

π(L ∩ m)
π(L ∩ m) + π(M ∩ m) + π(C ∩ m)

=
/

(/) +  + (/)
=




.
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On the other hand, the guard’s reply does depend on whether Curly will be executed,
and so the conditional probability of this event is different from the prior probability:

π(C | m) =
π(C ∩ m)

π(m)
=

/
/

=



.

While all this may sound like the right answer, it is possible that Larry would get
some useful information from the guard’s reply. Larry might have other beliefs about
what the guard will say when Larry is to be executed. As an extreme case, suppose
that the guard is monosyllabic and Larry knows that, given a choice of saying “Mo” or
“Curly”, the guard will always say “Mo”. Then the probability that the guard says “Mo”
conditional on Larry being executed is 1, rather than 1/2:

Figure 2.9
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1/3

m
(1/3)

1

c
(0)

0

M

1/3

m
(0)

0

c
(1/3)

1

C

1/3

m
(1/3)

1

c
(0)

0

In this case, you can see that the probability that Larry is going to be executed
conditional on the guard saying “Mo” is indeed 1/2. The reply “Mo” is bad news. But
the reply “Curly” would be good news; the probability that Larry is going to be executed
conditional on that reply is 0.

You may have seen this problem before. In another variant (the “Monte Hall” puz-
zle), a contestant on “Let’s Make a Deal” chooses a door, in the hope of finding the
door with a car behind it (the other two doors are empty). Then, as usual, Monte Hall
opens one of the unchosen doors and shows that it is empty. The contestant is now
given a chance to switch, but she reasons that there is no point in doing so because
the car is still behind her door or the remaining door with equal probabilities. As an
exercise, relate this puzzle to the previous problem, and determine whether there is
any advantage to switching.

2.2.4 Setting up the right state space: Example 2

Our second example—of an application of Bayes’ Theorem that requires first carefully
constructing the state space—is another famous puzzle. It can only be understood by
introducing subjective beliefs and it provides a nice critique of the principle of insuffi-
cient reason.

I show you two envelopes, and tell you that I have put twice as much money in one
as in the other, but I don’t tell you how much I put in or which envelope contains more.
I let you pick an envelope. Then I give you the opportunity to switch envelopes. Not
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knowing what to do, you consult your local statistician, who tells you to switch, giving
the following explanation:

You know that there is a fifty-fifty chance that you have picked the envelope
with the larger amount of money. Now, let x be the amount that is in the
envelope you picked. If you switch, you get x/ with probability 1/2, and x
with probability 1/2. The expected value of the amount of money in the other
envelope is thus .x, which is greater than the amount in your envelope.

There is no question that the answer is wrong (if it were right, then after switching
you would be better off switching again, and again, . . .). What we want to do is to see
the flaw in the argument explicitly.

First we need a states-of-nature model. Let’s give the envelopes names: a is the
envelope in your hand, and b is the other envelope. A state of nature is given by 〈e , y〉,
where e is the name of the envelope with the larger amount of money, and y is the
amount of money in that envelope. For example, states s = 〈a , 〉 and s = 〈b , 〉
correspond to the following:

s s

$ in your envelope  
$ in other envelope  

Suppose that you believe that y is , 12, or 24 with equal probability. The probability
that envelope a has the larger amount of money is independent of y. Hence, we can
depict the uncertainty as in Figure 2.10.

Figure 2.10

Larger amount (y)

Env. with more (e)
Money in a (x)
(Prob. of node)

6




a
x = 
(1/6)




b
x = 
(1/6)




14




a
x = 

(1/6)




b
x = 
(1/6)




24




a
x = 

(1/6)




b
x = 

(1/6)




Let’s first see whether you should switch envelopes if you first get to observe how
much is in the envelope you chose. Think for a moment about whether there might be
some reason to switch.

In the erroneous argument given by the “statistician”, it was assumed that the prob-
ability of having the envelope with the larger amount of money was independent of how
much money was in your envelope. This is where he made his mistake. a and b are
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not independent of x, even though they are independent of y! In the example,

P[a | x = ] = 

P[a | x = ] = /

P[a | x = ] = /

P[a | x = ] = 

Hence, the expected value of switching (E[xb ], where xB is the amount of money in
envelope B) can be greater than or less than x:

E[xb | x = ] = P[a | x = ](.) + P[b | x = ]() =  > 
E[xb | x = ] = P[a | x = ]() + P[b | x = ]() = . > 

E[xb | x = ] = P[a | x = ]() + P[b | x = ]() =  > 
E[xb | x = ] = P[a | x = ]() + P[b | x = ]() =  < 

In this example, you should switch if your envelope has $3 or $6, or $12, and keep your
envelope if it has $24.

When we do not observe the amount of money in the envelope, we can calculate the
expected value of switching by averaging the expected value of switching conditional
on each value of x, given the probability of x. Then we get

E[xb ] = P[x = ]E[ xb | x =  ] + P[x = ]E[xb | x = ]

+P[x = ]E[xb | x = ] + P[x = ]E[ xb | x =  ],

= (/)() + (/)(.) + (/)() + (/)(),

= ..

This is the same kind of calculation the statistician was using, but he substituted in the
wrong conditional probabilities. We get the right answer, which is that the expected
value of switching is equal to the expected value of keeping the envelope:

E[x] = (/)() + (/)() + (/)() + (/)() = ..

Note that it is impossible that E[a | y] be 1/2 for all y. This would imply that

π[y = ] = π[y = ] = π[y = ] = π[y = ] = . . . ;

if any of these probabilities is positive, then the sum of all the probabilities must be
greater than one. That is, it is impossible to have a uniform probability measure on an
unbounded range.

The fact that the resolution of the problem requires subjective beliefs that are not
uniform over the money values might bother you. The problem, as it is presented to
us, provides no information about how the money values are chosen. “How can I have
beliefs? How can I give one value of money a higher probability than another, when I
am totally ignorant?” It is the hypothetical nature of the puzzle that leads you to this
objection. In any actual occurrence of the situation, you would have beliefs based on all
sorts of information. For example, if I came to your class and did an experiment based
on this puzzle with real money, would you switch after observing that your envelope
has $1000? You would probably be very surprised to see that much money, but also
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be quite sure that you have the envelope with the larger amount of money in it. That
is, although you put low probability on y = , you put even lower probability on
y = . If, on the other hand, you knew that the envelopes only contained bills and
your envelope had $1 or $3, then you would know that your envelope had the smaller
amount of money and so you would want to switch.

Exercise 2.1. Read Puzzle 2, from the Winter 1990 issue of the Journal of Economic
Perspectives. Both the question and the solution are attached. You should derive and
explain the solution clearly and explicitly.

a. Start by drawing a tree representation of the uncertainty, with the first level resolv-
ing whether or not the patient takes zomepirac, and the second level resolving whether
the patient dies from zomepirac, dies from other causes, or does not die at all. Use sym-
bols to label the probabilities of all the branches.

b. In terms of these symbols, give the formula for the probability that the woman
died from zomepirac, conditional on her having died. (This is the probability that the
puzzle asks you to calculate.)

c. State what is known for sure about the probabilities in the tree, and why.

d. State what is approximately known about the probability that a patient dies condi-
tional on not taking zomepirac.

e. Using this approximation and the other information, you can now use the formula
from (b) to find the solution to the puzzle.

2.3 Independence and Exchangeability

2.3.1 Introduction

Chapter 11 in David Kreps’ Notes on the Theory of Choice is about independence, ex-
changeable random variables, and de Finetti’s theorem. These are fundamental topics
in statistics. They are also topics which highlight the differences between objective and
subjective uncertainty, and the various philosophies of probability and uncertainty.
Kreps gives an animated and interesting discussion of these differences.

The purpose of these notes is to review and practice the applications of exchange-
able random variables. As is my approach in most of this book, I will consider only
simple probability measures (finitely many possible outcomes), as this is sufficient for
conveying all the intuition.

2.3.2 Independence

Let { x̃ , x̃ , . . .} be an infinite sequence of random objects, all taking values in the same
finite set X. Think of these as the outcomes of potentially infinitely many repetitions of
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an experiment or trial. For each example, x̃i could be the outcome of the i ’th coin toss,
or the height of the i ’th person drawn randomly from a population, or the outcome of
the i ’th game of squash played between the same competitors.

The joint distribution of the first n objects { x̃ , . . . , x̃n } tells me, for any list of
values {x , . . . , xn }, the probability that simultaneously x̃ = x , x̃ = x, . . ., and
x̃n = xn . (Here, and in other places, I will take the first n objects even though the
same would apply to any n objects, even if non-consecutive.) If I were considering a
bet on the outcomes of the first two games of squash such that I win the bet if one
play wins both games but I lose if the players split games, then I would be interested in
the joint distribution of x̃ and x̃. The distribution of just one x̃i is called its marginal
distribution. If I were contemplating a bet on the outcome of the second game of squash
only, I would only be interesting in the marginal distribution of x̃.

The random objects { x̃ , x̃ , . . .} are independent if the joint distributions are the
products of the marginal distributions. That is,

P[ x̃ = x , x̃ = x , . . . , x̃n = xn ] = P[ x̃ = x ]P[ x̃ = x ] · · · P[ x̃n = xn ].

A nice feature of independence is that we can calculate the joint distributions from the
marginal distributions. These means that there is less information to keep track of.

The random objects { x̃ , x̃ , . . .} are identically distributed if each x̃i has the same
marginal distribution. By itself, this does not help us much. However, when the ob-
jects are both identically and independently distributed (IID), the common marginal
distribution is all the information we need to know the joint distribution of any of the
random objects.

One implication of the IID property is that the probability of a given string of out-
comes does not depend on the order of the outcomes. For example,

P[ x̃ = W, x̃ = W, x̃ = T]

= P[ x̃ = T, x̃ = W, x̃ = W] = P[ x̃i = W] P[ x̃i = T] (2.2)

That is, the probability of a given string of outcomes depends only on the number of
times each outcome appears in the string.

Furthermore, it becomes easy to calculate the probability of a particular frequency
of outcomes for the first n trials. An analogue of equation (2.2) gives us the probability
of any outcome of the first 5 games of soccer that has 2 wins, 2 ties and 1 loss. To get the
overall probability that the first 5 games have 2 wins, 2 ties and 1 loss, we multiply this
probability times the number of outcomes with this frequency of wins, ties and losses.
The number of such outcomes is the number of permutations of {W, W, T, T, L} (5
objects, 2 of which are of one kind, 2 of which are of another kind, and 1 of which is
of another kind), which is equal to

!
! · ! · !

= .

If the probability of a win is 1/2, the probability of a tie is 1/6, and the probability of a
loss is 1/3, then the probability of 2 wins, 2 ties and 1 loss in the first 5 games (or any
given 5 games) is thus

()
(

(/) (/) (/)) = /.
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When there are only two possible outcomes, then these method for calculating
the probability of a given frequency of outcomes reduces to the binomial distribution.
Suppose that each game must end in a win or a loss, and let θ be the probability of a
win. Then the probability of any outcome of n games that has m wins is θm (− θ)n−m .
(The probability of a loss is  − θ and there are n − m losses.) The number of ways in
which the n games can have m wins is

(n
m

)
= n!

m!(n−m)! . Hence the probability of m
wins out of n games is

b(m ; n , θ) =
(

n
m

)
θm ( − θ)n−m .

Because the case of just two possible outcomes is arithmetically the simplest, I will fo-
cus on this case in subsequent sections However, having more outcomes is conceptually
the same.

2.3.3 Exchangeability

There are many situations of repeated experiments or trials where you think that the
outcomes are identically and independently distributed, but you do not know what the
common marginal distribution is! The phrase “you think that the outcomes are IID”
is a little confusing here. Conditional on something you do not know, your subjec-
tive probabilities are IID. However, given that you do not know the common marginal
distribution, your unconditional (prior) subjective probabilities do not satisfy inde-
pendence. Instead, we just say that they are exchangeable.

Here is an extreme example that illustrates this distinction. Suppose that someone
has a two-headed coin and two-tailed coin. The person puts both coins in a box, shakes
the box, and then pulls out one of the coins but does not show it to you. Let’s look at
your beliefs about the outcomes of a sequence of tosses of the coin. With probabil-
ity 1/2 the coin has two heads, and with probability 1/2 the coin has two tails. Thus,
the probability that the first toss is heads is 1/2. Similarly, if you have to bet only on
whether the second toss is heads or tails, you would place probability 1/2 on heads.
These marginal probabilities are the same as when a normal coin is tossed. However,
because the outcomes of the tosses of a normal coin are independent, the probability
of getting heads on the first toss and tails on the second toss is 1/4 (1/2 times 1/2). In
the case of the two-headed or two-tailed coin, on the other hand, this probability is 0.
Hence, your beliefs (probabilities) about the outcomes of a sequence of tosses of the
coin are not independent. However, conditional on the coin having two heads, your
beliefs are trivially IID, because you know that each toss will come up heads.

Now a more interesting example. Recall the example of testing for the HIV virus
in the handout on “Bayes Theorem” and in the column of Ask Marilyn. Modify the
example by testing the same person n times. Let’s suppose for now that false test results
are only due to random laboratory errors, and do not have to do with the person who
was being tested. Then, conditional on knowing that the person has the HIV virus, the
test results are IID with probability 0.95 of a positive result. Conditional on knowing
that the person does not have the HIV virus, the test results are IID with probability
0.05 of a positive result. However, we do not know whether the person has the virus.

The overall uncertainty we face can be represented in a two-level tree, in which the
first level determines whether or not a person has the HIV virus, and the second level
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gives the number of positive results out of n trials. Here is the tree for n = :

Figure 2.11

Has virus?

# of positive
test results

H−

0.95

0

0.9025

1

0.095

2

0.0025

H+

0.05

0

0.0025

1

0.095

2

0.9025

The conditional probabilities in the second level are computed using the binomial
distribution, because, conditional on whether or not the person has HIV, the test results
are IID. Hence, we get some of the arithmetic advantages of working with IID test
results, but overall we have to consider several IID distributions (one for each branch
at the top level); if we already knew whether or not the person had HIV, we would only
have to calculate one binomial distribution.

To find out the overall probability that both test results are positive, we have to
add up the probabilities of the terminal nodes in the tree for which both test results are
negative. Let Yn be the random variable that is equal to the total number of positive test
results after n trials. Then the question we have asked is the probability that Yn = ,
and the answer is4

P[Yn = ] = P[H−]P[Yn =  |H−] + P[H+]P[Yn =  |H+] (2.3)

= (.)(.) + (.)(.) = . (2.4)

4. This is an example of “undoing” conditional probabilities to get unconditional probabilities. We have
done this kind of exercise several times, particular when applying Bayes Theorem. The general rule is that if
A , . . . , Ak are events that are disjoint and whose union is the entire set of states (i.e., it always the case that
one and only one of the events is true), and if B is any other event, then

P[B] =
k

∑
i=

P[Ai ]P[B | Ai ].
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2.3.4 Exchangeability and Bayesian Inference

We can also apply Bayes Theorem to calculate our revised belief that the person has
HIV, after observing two positive test results:

P[H+ |Yn = ] =
P[H+ and Yn = ]

P[Yn = ]

=
P[H+]P[Yn =  |H+]

P[Yn = ]

=
(.)(.)

.
= .

The two positive tests are much more conclusive than a single positive test.
What we have just been doing looks identical to the Bayes inference problem that

was on the handout “Bayes Theorem”, except that we did two tests for the virus instead
of one. Why is exchangeability important now that we have more than one test result?
First, we could claim that only the total number of positive results, rather than the
order of results, was important. Second, we could use the binomial distribution (or,
with more than two possible outcomes, some other distribution based on IID random
variables) to calculate the probabilities of the test results. If we repeated the tests 10
times, these simplifications would be very important. Instead of keeping track of order
of the results (which gives  = ,  possible outcomes) we only have to keep track
of the total number of positive results (which gives only 11 possible outcomes). We
can mechanically calculate the conditional probabilities using the binomial theorem:

P[Yn =  |H+] =
!

! · !
(.) (.) = ..

One has to be careful about jumping to the conclusion that the trial results are
exchangeable. For example, if you look at the results of tennis games, you will find that
there is correlation due to transient factors such as a player’s fatigue at one moment.
Also, even if trial results are exchangeable, you have to be careful when identifying
what you must condition on for tests results to be IID.

For example, go back and read the Ask Marilyn article. The author notes that we
cannot conclude that the test results are independent, because factors that cause an
error for a person are likely to cause an error for the person in repetitions of the test.
If these factors are transient, then the results are not exchangeable. If these factors are
the same in every repetition, then the results may be exchangeable, but conditioning
the probabilities just on whether or not the person has HIV will not be enough to get
IID test results. We have to also condition the probabilities on these other factors.

Suppose that there are actually two kinds of HIV viruses, I and II. 2/3 of the those
with HIV have virus I, and 1/3 have virus II. For people with HIV-I, the test produces a
false negative 3% of the time. For people with HIV-II, the test produces a false negative
9% of the time. For people without HIV, the test produces a false positive 5% of the
time, as before. The probability of a negative test result conditional on having HIV
(either kind) is 5% (why?). Therefore, the tree I drew in the “Bayes’ Theorem” handout,
for one trial, is still correct. However, the tree I drew above for two trials is not longer
correct. To restore independence of the trials, we have to condition our beliefs more
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finely; even though our goal is to draw inferences about whether the person has HIV,
without distinguishing among the viruses, we cannot reap the benefits of conditional
independence without conditioning also on whether the person has HIV-I or HIV-II.
The correct tree is shown in Figure 2.12.

Figure 2.12
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Now after observing two positive results, the probability that the person has either
HIV virus is5

P[H+ |Y = ] =

(.)(.) + (.)(.)
(.)(.) + (.)(.) + (.)(.)

= ..

2.3.5 What about Kreps’ Formula on Page 155?

Look at the formula for P[Y = ] that is on the top of page 155 in Kreps’ Notes on the
Theory of Choice. Look at my equation (2.3) for P[Y = ]. What is the difference? For
one thing, Kreps’ formula has n =  and m =  whereas mine has n =  and m = ;
to make the formulas more comparable, let’s rewrite mine for the case of n =  and
m = :

P[Y = ] = P[H−]P[Y =  |H−] + P[H+]P[Y =  |H+] (2.5)

Let α be the probability of a positive test result in each trial. Then P[Y =  |H−]
depends only on the value of α given H− (α = .), and P[H+]P[Y =  |H+]
depends only on the value of α given “H+” (α = .). Therefore, we can rewrite
equation (2.5) as

P[Y = ] =

P[α = .]P[Y =  | α = .] + P[α = .]P[Y =  | α = .]. (2.6)

5. After reading Ask Marilyn, you may have conjectured that this number would fall rather than increase.
However, her claim is based on the assumption that there are factors that make some non-HIV people more
likely to have false positive reports than others. I only modeled the case where some HIV people are more
likely to have false negative reports than others.
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Let’s generalize this a bit and assume that α can take on k values α , . . . , αk (e.g., at the
end of the previous section, we considered k = ). Then equation (2.6) becomes

P[Y = ] =
k

∑
i=

P[αi ]P[Y =  | α = αi ]. (2.7)

P[Y =  | α = αi ] is given by the binomial theorem, and so equation (2.7) becomes

P[Y = ] =
k

∑
i=

P[αi ]
!
!!

α
i ( − αi ) . (2.8)

This, in turn, is just

P[Y = ] = E
[

!
!!

α
i ( − αi )

]
(2.9)

given our beliefs about α. This is a particular example of the formula that is near the
bottom of page 154.

Now a technical detail you do not need to know for this course, except if you want
to take the last step to understanding Kreps’ formula on page 155. To cover the cases
where α can have finitely many or infinitely many values, we can summarize the beliefs
about α by a cumulative distribution function F (e.g., F(γ) is the probability that α
is less than or equal to γ). If F is differentiable, then the derivative f is the density
function, and the expected value in equation (2.9) is computed by integrating:

P[Y = ] =
∫ 



!
!!

α ( − α) f (α) dα. (2.10)

In more general versions of integration that can handle the case where F is not dif-
ferentiable, one common notation is to write dF(α) instead of f (α) dα. With this
substitution, plus a change in Greek letters from α to γ, we get Kreps’ formula:

P[Y = ] =
∫ 



!
!!

γ ( − γ) f (γ) dγ. (2.11)

2.3.6 What about de Finetti’s Theorem?

I gave a definition of exchangeability in Section 2.3.3. Actually, the original definition
of exchangeability is that the joint distribution function does not change when the
order of the trials is reversed. See page 154 for details. De Finetti’s proved that this
condition is equivalent to the one I stated in Section 2.3.3.

Even when each trial has only finitely many outcomes, de Finetti’s Theorem gets
complicated. The reason as that there are still infinitely possible values for the entire
sequence of trials. For example, if the outcome of each trial is 0 or 1, then an outcome
for the entire sequence of trials is an infinite sequence of 0’s and 1’s. This looks like
binary expansion of a real number, and the binary expansion of any real number could
be the outcome for the sequence of trials. Thus, “size” of the set of outcomes has the
cardinality of the continuum.

But you do not need to know the theorem in order to apply exchangeability, as
we have done above. This is why I asked you to skip over de Finetti’s Theorem when
reading Kreps’ Chapter 11. If you want to learn more about it, you will have to take an
advanced probability or statistics class.
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2.3.7 What about subjective uncertainty?

The ideas of exchangeability and applications to Bayesian inference do not require that
uncertainty be subjective. This topic is taught in statistics courses that make no refer-
ence to subjective uncertainty. So why did we study this right after studying subjective
uncertainty?

The long and interesting answer to this question is found in Kreps’ Chapter 11. I will
just give a very brief and simple answer. The reason is that conditional independence
property of the exchangeable processes typically has some “objectivist” foundations,
but the beliefs about the underlying parameters are typically subjective. For example,
in Kreps’ thumbtack example, we can repeatedly toss the thumbtack to measure the
empirical distribution of heads and tails. However, we cannot repeat this whole sce-
nario over and over again to get an objective measure of what our prior beliefs about
the bias of the talk should be.



.



Chapter 3

Risk Preferences

3.1 Money outcomes and risk aversion

3.1.1 Monetary outcomes and random variables

Recall the states-of-nature model, in which S is a finite set of states, π : S → R is a
probability measure on S representing beliefs, and X is a finite set of outcomes. An
act is a function x̃ : S → X. We now allow the set X to be infinite, so as not to be
too restrictive a priori about the potential outcomes. However, to keep the statistics
simple, we will almost always continue to assume that, for each act or lottery, the set
of possible outcomes is finite. This set is called the support and denoted supp( x̃) for a
random object or act x̃, or supp(P) for a distribution P.

It is common in applications of the model for outcomes to be amounts of money
or of a good. The set X is then a subset of the real line and an act is a random variable,
which is the name in statistics for a real-valued random object. Because we can take
the weighted average of real numbers, we can define the expected value of a random
variable x̃ : S → X to be

E[ x̃] = ∑
s∈S

π(s) x̃(s).

The expected value of x̃ depends only on its distribution P; we can define the expected
value of such a distribution by E[P] = ∑x∈supp(P) P(x)x.

If we list the states as S = {s , . . . , sn }, then we can represent a random variable x̃
by the vector 〈x , . . . , xn〉, where xs = x̃(s) for each state s. Just as we can add vectors
and multiply them by scalars, so we can perform such operations on random variables.
If ỹ and z̃ are random variables and α and β are numbers, then α ỹ + βz̃ is the random
variable x̃ defined by1

x̃(s) = α ỹ(s) + βz̃(s).

Using the vector representation, we have

〈x , . . . , xn〉 = 〈αy + βz , . . . , αyn + βzn〉.

When there are only two states, 1 and 2, each act is given by a pair 〈x , x〉 of
numbers, where xs is the monetary outcomes in state s. It is then possible to draw the
set of acts on the plane. For example, suppose you are considering how much to invest
in Zenith and the states are

 = “Zenith wins HDTV contract”,

 = “Zenith does not win HDTV contract”,

1. See the Appendix for the distinction between this operation and the mixing of probability measures.

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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Figure 3.1

       












Wealth in
state 2

Wealth in state 1

◦ (risk-free acts)

acts with EV=40/

/

〈π , π〉

Points on the plane are monetary outcomes of acts with two states of the world. Prob-
ability of state 1 is 1/3 and of state 2 is 2/3. ◦ line is the set of risk-free acts. The line
through 〈, 〉, perpendicular to 〈/, /〉 is the set of acts that have expected value
of 40. The scale of the vector 〈π , π〉 has been exaggerated to make the picture clearer;
only the orientation of this vector matters.

which occur with probabilities π and π, respectively. Let X = [, ∞), let x be your
net wealth in state 1, and let x be your net wealth in state 2. An act is then given by
a point 〈x , x〉 in the positive quadrant. This is like the consumption set in standard
consumer theory with two goods, except that instead of having goods like quiche and
beer, we have money in state 1 and money in state 2. The risk-free acts—those that
have the same wealth in states 1 and 2—are the diagonal (the ◦ line).

Fix a x̄ ∈ [, ∞) and consider the set of acts 〈x , x〉 whose expected value equals
x̄, i.e., for which

π x + π x = x̄ . (3.1)

Equation (3.1) resembles the budget constraint in standard consumer theory when the
price of good 1 is π, the price of good 2 is π, and income is x̄. In vector notation,
Equation (3.1) can be written

〈π , π〉〈x , x〉 = x̄ .

Thus, the set of acts whose expected value is x̄ is the line through 〈x̄ , x̄〉 that is perpen-
dicular to the vector 〈π , π〉. Figure 3.1 shows the set of acts whose expected value is
$40 when the probability of state 1 is 1/3 and the probability of state 2 is 2/3.
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3.1.2 Attitudes toward risk

Assume, until stated otherwise, that X is an interval of the real line representing mon-
etary outcomes and that preferences are state independent.

People use the term “risk” informally to mean the possibility of a bad outcome.
Suppose I am climbing a mountain and the outcomes are “live” or “die.” Sure, I prefer
to live for sure than to face a chance of death, and in that sense I am “averse” to the
“risk” of death. By the same token, I prefer to win a $1M lottery for sure than to face
a chance of not winning the lottery, and so I am “averse” to the “risk” of losing the
lottery.

However, if X is an interval of numbers, so that the random value of an act is well-
defined, we can ask a more subtle question. When faced with a random prospect P,
would the decision maker prefer to avoid uncertainty by getting instead the expected
value of the lottery for sure (i.e., getting instead the “lottery” that puts probability 1
on EV(P))? We classify the answers to this question as follows. The decision maker is
said to be ⎧⎪⎨

⎪⎩
risk averse if EV(P) � P

risk neutral if EV(P) ∼ P
risk loving if EV(P) ≺ P

⎫⎪⎬
⎪⎭

for every risky (non-deterministic) lottery P.
These definitions presume that preferences over acts reduce to preferences over

lotteries, which would not be true if preferences were state-dependent. Two acts x̃

and x̃ that have the same expected value x̄ might have the ranking

x̃ � x̄ � x̃

if x̃ has higher values in the states where money is most desired (like the net reim-
bursements from an insurance policy) and x̃ has higher values in the states where
money is least desired.

We will usually assume that decision makers are risk averse because this is what
we commonly observe. Hence, this is a descriptive, rather than normative, assumption.
There is nothing dumb about not being risk averse; we just do not see it very-loving
behavior very often, except in gambling situations.

3.1.3 Risk aversion and concavity of the utility function

Let u : X → R be the decision maker’s VNM utility function. By definition, the deci-
sion maker is risk averse if, for every lottery with outcomes x , . . . , xn and probabilities
α , . . . , αn , respectively,

u

(
n

∑
i=

αi xi

)
︸ ︷︷ ︸

Utility of expected value

>
n

∑
i=

αi u(xi )︸ ︷︷ ︸
Expected value of utility

(3.2)

If there are just two outcomes, with probabilities α and −α, respectively, this condition
is

u(αx + ( − α)x ) > αu(x ) + ( − α)u(x ). (3.3)
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When equation (3.3) holds for all distinct x , x ∈ X and all α ∈ (, ), a function
u : X → R is said to be strictly concave. One can show that equation (3.2) holds for
all lotteries if and only if equation (3.3) holds for all lotteries with two outcomes. We
therefore have Proposition 1.

Proposition . A VNM expected utility maximizer is risk averse (resp., risk neutral,
risk loving) if and only if her VNM utility function is strictly concave (resp., linear, strictly
convex).

A generalization of risk neutrality and risk aversion is weak risk aversion. A deci-
sion maker is weakly risk averse if EV(P) � P for all lotteries P. For weak risk aversion,
the strict inequalities in equations (3.2) and (3.3) become weak inequalities, and we
have the definition of a (weakly) concave function. Hence, a decision maker is weakly
risk averse if and only if her VNM utility function is concave.

A characterization of a concave function is that the area under the graph of the
function is a convex set.2 A function that is concave but not strictly concave has “flat”
regions in the graph, or could even be linear. If u : X → R is differentiable, then u is
concave if and only if u ′′(x) ≤  for all x ∈ X. If u ′′(x) <  for all x ∈ X, then u is
strictly concave. For a differentiable utility function u, we will take u ′′ <  to be the
definition of strict concavity, even though it is possible for a differentiable function to
satisfy equation (3.3) and have u ′′(x) =  for some isolated x ∈ X.

Figure 3.2 shows the strictly concave utility function

u(x) = ( + x)/ ,

for which X = [−, ∞). Observe that the shaded area below the graph is convex and
that

u ′′(x) = − 


( + x)−/ < .

Let x̃ be an act whose possible outcomes x = − and x =  occur with proba-
bilities α = / and α = /, respectively. The expected value of this lottery is

E[ x̃] = α x + α x =



(−) +



() = −.

The expected utility of this lottery for u(x) = ( + x)/ is

E[u( x̃)] = αu(x ) + αu(x ) =



() +



() = .

Figure 3.2 shows the points

A = 〈x , u(x )〉 = 〈−, 〉
B = 〈x , u(x )〉 = 〈, 〉

on the graph of u, and a line connecting these two points. If we move along this line
α = / of the way from A to B, we reach the point C whose x coordinate is the

2. For points {x , . . . , xn } ⊂ Rn and positive numbers λ , . . . , λn that sum to 1, ∑n
i= λi xi is said to be a

convex combination of {x , . . . , xn }. A set X ⊂ Rn is said to be convex if it contains all convex combinations
of points in X. It is enough to check convex combinations for any pair of points. That is, a set is convex if
and only if it contains all convex combinations of every two points in X (i.e., the line connecting every two
points in X). For example, a sphere and a disk are convex, but a torus and a circle are not.
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Figure 3.2

u(x) = ( + x)/

x = −

u(x ) = 

x = 

u(x ) = 

�
A

�
B

E[u( x̃)] = 

E[ x̃] = −

u(E[ x̃]) ≈ .

Region below graph
is a convex set

A concave utility function u(x) = ( + x)/ , and an act that pays −$ and $ with
probabilities / and /, respectively.

expected value α x + α x = − of the act, and whose y coordinate is the expected
utility αu(x ) + αu(x ) =  of the act. Since the line lies below the graph of the
function, you can see that u(E[ x̃]) > E[u( x̃)].

Figure 3.3 gives a different graphical view of risk aversion, drawn on the set of acts
when there are two states. The graph shows the set of acts whose expected value is 40,
as in Figure 3.1. It also shows the set of acts that are weakly preferred to the risk-free
act 〈, 〉. Here are some properties of this set:

• If the decision maker is risk averse, then 〈, 〉 is strictly preferred to all the risky
acts whose expected value is 40. Hence, the weakly-preferred set only intersects
the EV =  line at the ◦ line.

• Assuming that more money is preferred to less, the weakly-preferred set must lie
above the EV =  line.

• One can show that the weakly-preferred set is convex.

Hence, the weakly-preferred set must look like the shaded region in Figure 3.3. The
boundary of this set is the indifference curve through 〈, 〉, and it is seen to be
tangent to the EV =  line at the point 〈, 〉.

We can also derive this tangency property using calculus, assuming that the VNM
utility function u is differentiable. Recall that the budget line in standard consumer
theory is perpendicular to the price vector. Therefore, the condition that the indiffer-
ence curve through an optimal consumption bundle x be tangent to the budget line
means that the indifference curve and the budget line are perpendicular to the same
vector at x; hence, if U : Rn

+ → R is the consumer’s utility function and 〈p , . . . , pn〉 is
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Figure 3.3

Acts preferred
to 〈, 〉

       












Wealth in
state 2

Wealth in state 1

◦ (risk-free acts)

acts with EV=40

/

/

〈
∂U
∂x

, ∂U
∂x

〉
∝ 〈π , π〉

Probability of state 1 is π = / and of state 2 is π = /. Shaded region is set of acts
that are preferred to the risk-free act 〈, 〉.

the price vector, then 〈
∂U
∂x

(x), . . . ,
∂U
∂xn

(x)
〉

∝ 〈p , . . . , pn〉.

Let’s apply this property to the utility function

U (x , x ) = πu(x ) + πu(x ) (3.4)

on the set of acts. The gradient at a point 〈x , x〉 is〈
∂U
∂x

(x , x ),
∂U
∂x

(x , x )
〉

= 〈πu ′(x ), πu ′(x )〉.

Along the ◦ line (or the diagonal, in higher-dimensional cases), x = x = x̄ for
some x̄ ∈ R. Hence u ′(x ) = u ′(x ) = u ′( x̄). This implies that〈

∂U
∂x

( x̄ , x̄),
∂U
∂x

( x̄ , x̄)
〉

= u( x̄)〈π , π〉 ∝ 〈π , π〉.

That is, the gradient points in the same direction as the vector of probabilities. As
discussed in Section 3.1.1, a set of points with the same expected value is a line per-
pendicular to 〈π , π〉. Hence, at 〈, 〉, both the EV =  line and the indifference
curve through 〈, 〉 are perpendicular to 〈π , π〉, which implies that the EV = 
line and the indifference curve are tangent.



Money outcomes and risk aversion 63

Exercise 3.1. A risk-averse decision maker has initial wealth of $10,000 and needs to
leave $5,000 in the hotel safe. Not being the nicest hotel, there is still a 1/4 chance of
theft. The hotel will only insure against theft if the decision maker buys insurance. The
hotel will sell the decision maker insurance at the rate of $.25 per dollar of coverage.

a. On a graph showing wealth in each state, mark the act (state-dependent wealth) the
DM faces if he buys no insurance and mark the act he faces if he buys full insurance
($5,000 of coverage).

b. Draw all the acts the DM can choose from, by varying the amount of coverage
(including “negative” coverage and excess coverage, but without letting wealth in either
state be negative).

c. How much coverage should the DM buy? Give the most direct explanation you
can.

3.1.4 Certainty equivalents and risk premia

Suppose that a decision maker prefers more money to less (preferences over pure out-
comes are strictly monotone). Then, for each lottery P, there is a unique amount of
money CE(P) such that the decision maker is indifferent between P and getting CE(P)
for sure. CE(P) is called the certainty equivalent of P. If the decision maker is risk neu-
tral, the certainty equivalent is equal to the expected value of the lottery. However, if
the decision maker is risk averse and P is risky, then these are not equal and the ex-
pected value is strictly preferred to the certainty equivalent. Since we are assuming
that preferences are strictly monotone, the expected value must be greater than the
certainty equivalent. The difference,

RP(P) = EV(P) − CE(P),

is called the risk premium of lottery P. Since CE(P) is the smallest amount of money
the decision maker would accept in exchange for the risky lottery P, the risk premium
is the maximum amount of money the decision maker would be willing to give up in
expected value in order to avoid the riskiness of P.

To calculate the certainty equivalent of a lottery, we just find the expected utility,
and then take the inverse of the expected utility to find the sure amount that gives the
same utility. Recall the example, from Section 3.1.3, with u(x) = ( + x)/ and the
act x̃ that yields − and 51 with probabilities 4/7 and 3/7, respectively. We calculated
that the expected utility of the act is 6. Hence, the certainty equivalent is

CE( x̃) = u− (E[u( x̃)] = u− () = −.

We also calculated that the expected value of x̃ is −. Hence, the risk premium is 12.
The certainty equivalent and risk premium are shown in Figure 3.4.

Figure 3.5 illustrates the certainty equivalent and risk premium of an act when
there are two states. It shows an indifference curve through a risky act. The certainty
equivalent is the intersection of the indifference curve with the ◦ line.
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Figure 3.4

u(x) = ( + x)/

x xCE EV

RP

EU

The expected utility (EU), expected value (EV), certainty equivalent (CE), and risk premium
(RP) of the lottery shown in Figure 3.4.

Figure 3.5

       











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Wealth in state 1

◦ (risk-free acts)
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risky act

x̃

risk-free act
with same EV
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with same EU

CE
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indifference curve

Probability of state 1 is 1/3 and of state 2 is 2/3. Graphs shows a risky act, the indifference
curve through the act, the risk-free act with the same utility (intersection of indifference
curve and ◦ line), and the risk-free act that has same expected value.
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Exercise 3.2. Suppose that a person maximizes his expected utility, with the utility
function given by u(z) = z /. Suppose that the person engages in a risky venture
which leaves him with either $81 or $25, with equal probability. What is the certainty
equivalent of this business venture? What is the risk premium?

Exercise 3.3. Suppose that Mao is an expected utility maximizer, with the VNM utility
function u(x) = log(x), for x >  (use natural log).

a. What is Mao’s certainty equivalent of the following lottery:

Probability Money

.4 30

.5 100

.1 500

b. What is the risk premium Mao is willing to pay to insure against this uncertain
prospect?

c. Suppose Mao has $1,200,000 in wealth, and decides to become a backsliding oil
prospector. He finds a tract of land for sale for $1,000,000 dollars, which will produce
no return at all if no oil is found, or will yield $10,000,000 of income (net of operating
expenses but not of the cost of the land) if oil is found. Let p be the probability that oil
is found. Specify the two lotteries that result from the actions, “buy that land” and “not
buy the land”. What probability p of finding oil would make Mao exactly indifferent
between buying the land and not buying the land?

Exercise 3.4. A person has VNM utility function u(z) = log z. She has initial wealth
of $10,000 and has become a finalist in a lottery such that her ticket will pay off $990,000
with probability 1/2, and $0 with probability 1/2. What is the minimum amount of
money she would be willing to receive in exchange for the ticket? Show your calcula-
tions.

3.2 Comparing the risk aversion of people

3.2.1 Interpersonal comparisons of risk aversion

Let Ingrid and Hobbes be two weakly risk-averse expected utility maximizers with
strictly increasing utility. We say that Ingrid is as risk averse as Hobbes if, for every act,
Ingrid’s risk premium is as large as Hobbes’ risk premium. If Ingrid’s risk premium is
larger than Hobbes’ whenever the act is risky, then Ingrid is said to be more risk averse
than Hobbes.
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You can see that Ingrid is as risk averse as Hobbes if and only if, when comparing
a risky act x̃ to a risk-free act ỹ, if Ingrid (weakly) prefers x̃ to ỹ, then so does Hobbes.

Note that“as risk averse as” is an incomplete ordering of decision makers. For some
lotteries, Ingrid’s risk premium may be higher than Hobbes’, while the opposite may be
true for other lotteries; then we can say neither that Ingrid is as risk averse as Hobbes
nor that Hobbes is as risk averse as Ingrid.

When the VNM utility functions ui and uh of Ingrid and Hobbes are differentiable,
there is a simple way to check whether Ingrid is as risk averse as Hobbes. Let

RA (x) = −u ′′(x)
u ′(x)

.

This is called the Arrow-Pratt measure of absolute risk aversion. Ingrid is as risk averse
as (more risk averse than) Hobbes if and only if Ingrid’s RA is as large as (greater than)
Hobbes’ for all x.3

For example, suppose ui = xα and uh = xβ , where  < α < β < . Then

−
u ′′

i (x)
u ′

i (x)
=

 − α
x

and −
u ′′

h (x)
u ′

h (x)
=

 − β
x

.

Since α < β,

−
u ′′

i (x)
u ′

i (x)
> −

u ′′
h (x)

u ′
h (x)

for all x. Hence, Ingrid is more risk averse than Hobbes.
If we are interested in who has a greater risk premium for a lottery with just two

outcomes x and x, then it is not enough to compare RA for just x and x. We have
to check the condition for all x between x and x as well.

When comparing the risk aversion of two people, we might define outcomes to be
final wealth. However, it is more relevant to define outcomes to be net transactions.
Then we can compare the risk premia of an investment for two people who have dif-
ferent levels of baseline wealth.

3.2.2 Intrapersonal comparisons of absolute risk aversion

When outcomes are net transactions, we can also ask how a single person’s risk aversion
changes with her baseline wealth. That is, how does the risk premium of an act w + x̃,
with outcomes defined as final wealth, vary with w? If the risk premium decreases
(resp., remains constant, increases) as w increases for every risky x̃, then the DM is said
to exhibit decreasing (resp., constant, increasing) absolute risk aversion.

A DM with VNM utility u has decreasing (resp., constant, increasing) absolute risk
aversion if and only if RA (x) is decreasing (resp., constant, increasing) as a function
of x.

3. You might have guessed that comparing the second derivatives of the utility functions would work; u′′ <
 is a characterization of risk aversion, and so perhaps Ingrid is as risk averse as Hobbes if u′′

i (x) ≤ u′′
h (x)

for all x. However, for any constant α > , the VNM utility function αui also represents Ingrid’s risk
preferences, but αu′′

i �= u′′
i if α �= .
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Not all risk preferences can be classified this way. There may be two gambles x̃

and x̃ and four baseline levels of wealth w < w and w < w such that

RP(W + x̃ ) < RP(W + x̃ ), and

RP(W + x̃ ) > RP(W + x̃ ).

As an exercise, show that this is the case for the following piecewise-linear concave
utility function:

u(x) =

{
x x ≤ ,

x +  x ≥ .

It is widely observed that people exhibit decreasing absolute risk aversion. If we
take this as given and also assume that everyone has the same VNM utility function
over final wealth, then wealthier people are less risk averse than poorer people with
respect to their net transactions. This link between wealth and risk aversion is also
observed empirically—not as a rule, but as a general pattern.

In spite of this empirical evidence, economists often make the simplifying assump-
tion that people have constant absolute risk aversion (CARA). All utility functions with
this property are of the form

u(x) = −e−λx

(negative exponential), where λ is a positive constant that is equal to RA (x) for all x and
is called the coefficient of absolute risk aversion. Such a utility function is called a CARA
utility function. For empirical work, if one restricts attention to CARA utility functions
then there is only one parameter to be estimated. It may be a reasonable approximation
when modeling investment decisions, even if a rich investor would have much different
risk preferences if he were poor, as long as the outcomes of the investments are not
likely to make the investor poor.

Exercise 3.5. A risk-averse VNM decision maker has decreasing absolute risk aver-
sion. Her certainty equivalent for a lottery that pays $0 and $800 with probabilities 1/3
and 2/3, respectively, is $500.

a. Which does she prefer, to get $400 and $1200 with probabilities 1/3 and 2/3, re-
spectively, or to get $900 for sure? (Explain.)

b. How does she rank the lotteries in Figure E3.1? (Explain.)

Figure E3.1

P

$700




$1000




Q

$800




$400




$1200



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Exercise 3.6. Kreps, A Course …, p. 131, Problem 15.

Exercise 3.7. Consider a person who has the following piecewise-linear utility func-
tion:

u(z) =

{
z z < $, 

 + z z ≥ $, .

Graph this utility function. Does the person have increasing or decreasing absolute risk
aversion over the domain of her utility function (e.g., 0 to $2,000)? Explain. Do not try
to apply a mechanical criterion, such as the measures of risk aversion that use differ-
entiation. Instead, directly apply the definition of increasing and decreasing absolute
risk aversion.

3.2.3 Intrapersonal comparisons of relative risk aversion

[Incomplete]

Exercise 3.8. Consider a person who has decreasing absolute risk aversion and constant
relative risk aversion. Let x̃ be the risky net profit of a particular business venture, and
let w be the person’s initial wealth, so that the person’s total wealth given the venture
is w + x̃. Suppose that if w = , then the person’s risk premium for the venture x̃ is
$10.

a. Can you say whether the risk premium if the initial wealth were $300 would be
greater than, less than or equal to $10?

b. What is the risk premium for a risky venture  z̃ if the initial wealth is 600? (Explain)

3.3 Comparing the riskiness of acts

3.3.1 Dominance for risk-averse decision makers

If you know a VNM utility function and the distributions of two acts x̃ and ỹ, then it is
a simple matter to calculate the expected utility of each act and choose the one with the
higher expected utility. However, it is often useful to be able to determine the ranking
of two acts even when you have only partial information about the utility function. This
is the purpose of the various dominance criteria we have studied and will study. For
example, suppose you have been able to check a mathematical condition that tells you
that every risk-averse decision maker prefers act x̃ to act ỹ. This helps you as follows.

1. If you are an economist or are otherwise interested in predicting the choices made
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by decision makers, you can predict a risk-averse individual’s choice between x̃
and ỹ, without knowing the individual’s exact preferences over risky prospects.

2. If you have been delegated to make a decision for your risk-averse boss, then you
can eliminate ỹ from consideration even if you do not know exactly what your
boss’s risk preferences are.

3. If you are making a decision for yourself, but are not sure even of your own risk
preferences, you can at least eliminate from consideration ỹ.4

Similarly, when choices are ranked by statewise dominance (Section 1.2.3), you
can predict choices or make delegated choices, knowing only that that the interested
party’s utility is strictly increasing. When choices are ranked by first-order stochastic
dominance (Section 1.3.6), you can predict choices or make delegated choices knowing
only the interested party’s beliefs and that utility is strictly increasing.

Here are the dominance criteria that presume that a decision maker is risk averse:

Definition . Let x̃ and ỹ be two acts with known distributions.

• x̃ is less risky than ỹ if every risk-averse decision maker prefers x̃ over ỹ.
• x̃ second-order stochastically dominates ỹ if every risk-averse decision maker with

strictly increasing utility prefers x̃ over ỹ.

The first criteria, called decreasing risk, is weaker than second-order stochastic dom-
inance (s.o.s.d.) because it is not assumed that the decision maker has increasing utility.
The reason I focus on decreasing risk in this part, rather than simply s.o.s.d., is not be-
cause it bothers me to assume that utility is increasing. Instead, it is because I can then
focus on what risk aversion tells us, independently of monotonicity.

3.3.2 Variance as a measure of risk

The criteria of decreasing risk and second-order stochastic dominance are not very
useful unless we have some mathematical characterizations that allow us to identify
when one act dominates another.

Consider decreasing risk. Since this criteria does not presume that utility is in-
creasing, a necessary condition for x̃ to be less risky than ỹ is that E[ x̃] = E[ ỹ]. If
E[ x̃] > E[ ỹ], for example, there will always be a decision maker with decreasing util-
ity and sufficiently low risk aversion that she prefers ỹ to x̃.

Let Var( x̃) be the variance of an act x̃. Given two acts x̃ and ỹ with the same mean,
you might conjecture that x̃ is less risky than ỹ if and only if Var( x̃) < Var( ỹ). After
all, informally speaking, variance is a measure of the variability of a random variable,
which in turn is closely related to risk, Furthermore, if x̃ is risk free and ỹ is not (so
that x̃ is surely less risky than ỹ), then Var( x̃) =  < Var( ỹ), .

It would be very nice if this conjecture were correct. Variance is easy to calculate
and we could unequivocally rank every pair of acts that have the same mean. Unfor-
tunately, variance does not work as a measure of decreasing risk.

4. Note how I have inverted expected utility theory. Expected utility was introduced as a representation of
rational preferences over lotteries or acts (normative theory). Now it is a method for determining preferences
(prescriptive theory).
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Figure 3.6

    

E[u( x̃)]

E[u( ỹ)]

x xy y

E[ x̃] = E[ ỹ]

u(z)

An example of a utility function and two acts x̃ and ỹ that have the same mean and the
same variance such that ỹ gives higher expected utility than x̃ .

To demonstrate this, it suffices to find two acts x̃ and ỹ with the same mean and
variance and one risk-averse decision maker who strictly prefers x̃ to ỹ. Figure 3.6
shows such an example. The acts x̃ and ỹ have the following distributions:

x Prob(x)

2 1/5
12 4/5

y Prob(y)

8 4/5
18 1/5

The mean of both acts is 10 and the variance of both acts is 16:

Var( x̃) = 
 ( − ) + 

 ( − ) = ,
Var( ỹ) = 

 ( − ) + 
 ( − ) = .

Yet we can see in the figure that E[u( x̃)] < E[u( ỹ)]. (I could also find a utility function
such that E[u( x̃)] > E[u( ỹ)].)

The acts x̃ and ỹ violate an easy-to-check necessary condition for x̃ to be less risky
than ỹ. The support of x̃ must be nested in the support of ỹ. This means that (a)
the lowest possible value of x̃ is as high as the lowest possible value of ỹ and (b) the
highest possible value of x̃ is as low as the highest possible value of ỹ. In this example,
the support of x̃ is not nested in the support of x̃ because x < y; the support of ỹ is
not nested in the support of x̃ because y > x.

Variance is not completely useless for checking decreasing risk because another
necessary condition for x̃ to be less risky than ỹ is that Var( x̃) < Var( ỹ). Hence, if we
find that Var( ỹ) < Var( x̃), we cannot be sure that ỹ is less risky than x̃, but we do
know that x̃ is not less risky than ỹ.

To see that this is true, we just have to find one utility function such that, for acts
with the same mean, the one with the lowest variance has the highest expected utility.
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The quadratic utility function

u(x) = −x + ax

has this property. Observe that

E[u( x̃)] = −E[ x̃ ] + aE[ x̃].

Since E[ x̃ ] = Var( x̃) + E[ x̃],

E[u( x̃)] = aE[ x̃] − E[ x̃] − Var( x̃).

Hence, E[u( x̃)] > E[u( ỹ)] if E[ x̃] = E[ ỹ] and Var( x̃) < Var( ỹ).
In summary, although variance is not a sufficient measure of decreasing risk, we

have found three necessary conditions for x̃ to be less risky than ỹ:

1. E[ x̃] = E[ ỹ];
2. support of x̃ is nested in the support of ỹ;
3. Var( x̃) < Var( ỹ).

The analogous necessary conditions for x̃ to second-order stochastically dominate
ỹ are the following:

1. E[ x̃] ≥ E[ ỹ];
2. the lowest possible value of x̃ is as large as the lowest possible value of ỹ;
3. Var( x̃) ≤ Var( ỹ).

Exercise 3.9. Consider the example in Figure 3.6, which illustrates that variance is not
a sufficient measure of risk. In the example, ỹ is preferred to x̃. Draw a similar example
with the same acts but a different concave utility function such that x̃ is preferred to ỹ.

3.3.3 Characterization of decreasing risk

Here is a criterion that does determine whether a random variable is less risky than
another:

Proposition . An act x̃ is less risky than an act ỹ if and only if there is a random variable
ε̃ such that:

1. E[ ε̃ | x̃ = x ] =  for all x in the support of x̃ (i.e., E[ ε̃ | x̃ ] = ); and
2. ỹ and x̃ + ε̃ have the same distribution (written x̃ d

= ỹ + ε̃).

Once you understand what these conditions mean, the criterion is intuitive. For
example, consider the acts x̃ and ỹ shown at the top of Figure 3.7. It may not be obvious
that every risk-averse decision maker prefers x̃ to ỹ. But now consider the tree at
the bottom of the figure. It shows a two-stage gamble. In the first stage, you receive
winnings (or losses) x̃. Instead of stopping, you gamble again and win ε̃, which is
added to x̃. The distribution of ε̃ depends on the realization of x̃, but for each possible
realization x, the second-stage gamble has a conditional expected value of 0. That is,
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Figure 3.7

x̃











ỹ
















x̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̃

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̃ + ε̃

x̃ + ε̃

50




-50






+25






100




-25






+25






A random-variable characterization of decreasing risk. ỹ has the same distribution as the
two-stage gamble x̃ + ε̃, and E[ x̃ |ε̃] = . Hence, x̃ is less risky than ỹ .

E[ ε̃ | x̃ = x ] = . If you are risk averse, you would always prefer to stop after learning
x̃. Participating in the second stage subjects you to additional risk, but never increases
the expected value of your winnings. Hence, overall you prefer the one-stage gamble
x̃ to the two-stage gamble x̃ + ε̃. You are indifferent between x̃ + ε̃ and ỹ if these two
gambles have the same distribution, which you can verify for this example. Therefore,
you also prefer x̃ to ỹ.

We will use this “random-variable” characterization of decreasing risk several times
in this book because it is sometimes very straightforward to apply in “abstract” settings.
As an example, we have the following proposition.

Proposition . If two random variables are normally distributed and have the same
mean, then the one with the lower variance is less risky.

(That is, if we restrict attention to normally distributed acts, variance is a measure of
risk.)

Proof. We just need the following property of the normal distribution. If x̃ ∼ N (µx , σ 
x )

(read this “x̃ is normally distributed with mean µx and variance σ 
x ”) and ỹ ∼ N (µy , σ 

y )
and if x̃ and ỹ are independent, then

x̃ + ỹ ∼ N (µx + µy , σ 
x + σ 

y ).
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(Read this: “The sum of two normally distributed random variables is normally dis-
tributed; if the random variables are independent, the mean and variance of the sum
are equal to the sums of the means and of the variances, respectively.”) Let x̃ and ỹ be
normally distributed with the same mean µ and with variances σ 

x and σ 
y , respectively.

Assume σ 
x < σ 

y . Let ε̃ be a random variable that is distributed N (, σ 
y − σ 

x ) and is
independent of x̃. Then

x̃ + ε̃ ∼ N (µx + , σ 
x + (σ 

y − σ 
x )) = N (µy , σ 

y ).

That is, x̃ + ε̃ has the same distribution as ỹ. Furthermore, since ε̃ is independent of x̃,
E[ ε̃ | x̃ ] = E[ε̃] = . Hence, x̃ is less risky than ỹ. �

If you are just given two simple random variables, applying the random-variable
condition is a tedious linear programming problem. There is another characterization
of decreasing risk that is easier to check, especially if you can program your computer
to do the calculations. Let F and G be the cumulative distribution functions of acts x̃
and ỹ, respectively. Then x̃ is less risky than ỹ if and only if x̃ and ỹ have the same
mean and ∫ x

(F(t) − G(t)) dt ≤ 

for all x, with strict inequality for some x. However, we do not use this characterization
in this book; hence, I will not give an explanation or an example.

The characterizations of s.o.s.d. are similar. In the random-variable condition, we
replace E[ ε̃ | x̃ ] =  by E[ ε̃ | x̃ ] ≤ . In the integral condition, we drop the requirement
that x̃ and ỹ have the same mean.

Exercise 3.10. You are trying to decide how to invest $5,000. Only money outcomes
matter and your preferences over money are state independent. Here are four invest-
ment opportunities, together with the possible outcomes:

“Investment” Possible outcomes

A Buy $5,000 of bonds from the
Hungarian State Bank

lose $5000 or win $1000

B Bet $2000 that a presidential
candidate will pledge to raise taxes

lose $2000 or win $50000

C Buy $5000 of euros lose $500 or win $800
D Send your delinquent son to college lose $5000

You know that each outcome can occur with positive probability and you know that
the expected payoffs for investments A, B and C are the same (but you don’t know
what this mean is).

State whether each of the following second-order stochastic dominance relations is
true, false or uncertain (given the information you have) and give a brief explanation:

1. A s.o.s.d. B;
2. C s.o.s.d. A;
3. A s.o.s.d. D.
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Exercise 3.11. What is wrong with this reasoning? Suppose x̃ and ỹ have the same
mean and ỹ is less risky than x̃, so that we can write

x̃ d
= ỹ + ε̃

for some ε̃ such that E[ε̃ | ỹ] = . Then we can also write

ỹ d
= x̃ − ε̃ .

Since the expected value of ε̃ is 0, so is the expected value of −ε̃. Therefore, y is also
risker than x.

Exercise 3.12. A consumer must choose between (A) a sure payment of $400 and (B)
a gamble with prizes $0, $100, $600 and $1000 with probabilities 0.25, 0.1, 0.4 and
0.25, respectively. All you know is that (i) the consumer satisfies the VNM axioms
for this kind of lottery, (ii) she is risk averse, (iii) she prefers more money over less,
and (iv) her risk premium for a gamble (C) with prizes $0 and $1,000, equally likely,
is $100. Show that the consumer therefore must prefer B over A. (If your answer is
getting complicated, you are on the wrong track. The idea of increasing risk is useful.)

Exercise 3.13. Show that the random prospect x̃ in Figure E3.2 is less risky than ỹ by
showing that ỹ d

= x̃ + ε̃ with E[ε̃ | x̃] = :

Figure E3.2

x̃











ỹ
















Exercise 3.14. Let P be a lottery that pays $20 with probability 1/3 and $40 with prob-
ability 2/3. Let Q be a lottery that pays $10 with probability 1/6, $30 with probability
11/18, and $60 with probability 2/9. Show that P is less risky than Q by showing that
there are random variables x̃, ỹ and ε̃ such that (i) P is the distribution of x̃, (ii) Q is
the distribution of ỹ, (iii) E[ε̃ | x̃] = , and (iv) ỹ and x̃ + ε̃ have the same distribution.

Exercise 3.15. Let w̃ be independent of both x̃ and ỹ. x̃ and ỹ are two random prospects
that a decision maker with utility u is choosing between. w̃ is the decision maker’s
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other wealth. Assume that u is increasing and concave and assume that x̃ second-order
stochastically dominates ỹ.

a. Applying the law of iterated expectations, show that

E[u(w̃ + x̃)] > E[u(w̃ + ỹ)].

b. Conclude that w̃ + x̃ second-order stochastically dominates w̃ + ỹ.

c. Give an example that illustrates that this is not true if w̃ is not independent of x̃
and ỹ.

d. Explain how this result might help you if you are managing a portfolio for someone
whose risk preferences you do not fully know (e.g., for yourself!) or if you are trying
to predict the behavior of agents whose preferences you do not fully know.

3.3.4 Mean-variance analysis

In some of the theory and practice of finance and portfolio choice, it is assumed that
the investor’s preferences over acts are represented by a utility function U (µ , σ  ) of the
mean and variance of the acts, which is increasing in the mean and decreasing in the
variance. This approach to portfolio selection is called mean-variance analysis. It is the
basis, for example, of the capital-asset pricing model (CAPM).

In Section 3.3.2, we saw that if we start with expected utility maximization, the
preferences over acts or lotteries generally do not reduce to a function of just the mean
and variance of the acts or lotteries. That is, mean-variance analysis is generally not
consistent with expected utility maximization. In this section, I will give some justifi-
cation for using mean-variance analysis anyway. First, let’s consider its nice properties.

1. The set of distribution functions over the real numbers is huge (infinite dimen-
sional). With mean-variance analysis, distributions are parameterized just by their
mean and variance. Hence, the set of distributions reduces to a 2-dimensional set.
This simplifies theoretical modeling.

2. The reduction of the set of distributions to a 2-dimensional set makes practical and
empirical finance much easier because it reduces the information that is needed
about asset returns. The distribution of asset returns are typically predicted based
on past returns. The empirical mean and variance of the past returns can be used
as an estimate of the mean and variance of future returns. With mean-variance
analysis, these are the only aspects of the asset returns that must be estimated,
whereas with general expected utility all moments of the asset returns are relevant.
Although it is possible to estimate higher-order moments, the precision of these
estimates decreases quickly with the order of the moment.

3. The problem of quantifying the distribution of assets is closely related to the econo-
metrician’s problem of deducing investor’s utility functions. At first, it may not
seem that it is less difficult to estimate a utility function over the mean and vari-
ance of the lotteries (two variables) than it is to estimate a utility function over
money. However, we do not directly observe the strength of investors’ preferences
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for money; instead, we observe choices of risky portfolios. Unless we have esti-
mates of the investors’ beliefs about the distributions of the asset returns, we cannot
use these choices to make estimates of the utility functions. Obviously, estimating
investors’ beliefs about distributions is even harder than estimating the distribu-
tions (since we do not know what information the investors have). It is much easier
if we only have to estimate what the investors’ estimates of the mean and variance
are.

4. Mean-variance analysis provides a dominance criterion (x̃ mean-variance dom-
inates ỹ if E[ x̃] ≥ E[ ỹ] and Var( x̃) ≤ Var( ỹ)) that is much more powerful
than second-order stochastic dominance. Although second-order stochastic dom-
inance implies mean-variance dominance, the converse is not true. Furthermore,
whereas to show second-order stochastic dominance we need to know the entire
distribution of the lotteries (e.g., we need to integrate their cumulative distribution
functions), we can rank lotteries by their mean and variance knowing only these
two moments.

Given these advantages, we may be willing to use mean-variance analysis even if it
is just an approximation (after all, as a positive theory, expected utility is also just an
approximation). Under what conditions is it a good approximation?

We can get two answers to this question from results of earlier sections. The first
case is when all available acts are (approximately) normally distributed. Because nor-
mal distributions are completely parameterized by the mean and variance, it is possible
to write preferences over a set of normally distributed acts in terms of preferences over
the means and variances of the acts. Normal distributions have three additional prop-
erties that make this fact useful. First, we showed in Section 3.3.3 that risk-averse deci-
sion makers prefer normal distributions with lower variance. Second, linear combina-
tions of normally distributed acts are normally distributed.5 This means, for example,
that if asset returns are normally distributed, then the return on a portfolio of assets
is normally distributed. Third, the central limit theorem tells us that many empirical
distributions are, in fact, approximately normal.

Mean-variance preferences are particularly simple (linear) when the acts are nor-
mally distributed and utility exhibits constant absolute risk aversion (u(x) = −e−λx).
Preferences over acts with mean µ and variance σ  are then represented by the function

U (µ , σ ) = µ − λ
 σ  .

The second case in which mean-variance analysis is a good approximation is when
the decision maker’s utility function is approximately quadratic:

u(x) = ax − x .

We saw is Section 3.3.2 that, for any act x̃,

E[u( x̃)] = aE[ x̃] − E[ x̃] − Var( x̃).

In fact, the quadratic utility function is the only one for which preferences over all
distributions are mean-variance preferences. However, the quadratic utility function

5. These two properties hold for elliptical distributions, which include the normal distributions.



Comparing the riskiness of acts 77

has some peculiar properties. It reaches a maximum at x = a and decreases for x > a.
Even for x < a, this utility function exhibits increasing absolute risk aversion, which is
inconsistent with empirical observations.

The use of quadratic utility functions is usually accompanied by an assumption
that the outcomes of the acts fall in the region where the utility function is increasing.
This is just a dissimulated claim that quadratic utility is good as a local approximation.
The idea is that we can use the Taylor expansion of the utility function and drop terms
higher than the second power, which leaves a quadratic function that approximates
the utility function. Assuming that u is three times continuously differentiable, the
first two terms

v(x) = u( x̄) + u ′( x̄)(x − x̄) + 
 u ′′( x̄)(x − x̄)

of the Taylor expansion of u around x̄ is an approximation of u for x close to x̄. Cal-
culating E[v( x̃)] and simplifying by adding and multiplying by constants, we obtain
the following mean-variance preferences:


(

x̄ − u ′( x̄)
u ′′( x̄)

)
E[ x̃] − E[ x̃] − Var( x̃). (3.5)



.



Chapter 4

Market Decisions in the Presence
of Risk

In this chapter, we look at a variety of decision problems for participants in markets
in which uncertainty and risk (but not information and inference) are important. The
chapter has two broad goals:

• To learn and practice techniques for solving or characterizing the solutions to such
decision problems. In pursuit of this goal, we will even study decision problems
that will not reappear in later chapters.

• To discover some properties of demand for state-contingent contracts—such as
financial assets or insurance contracts—in preparation for Chapter 5, where we
study financial and insurance markets.

4.1 Demand for a state-contingent contract

One market decision that is obviously related to uncertainty is demand for a state-
contingent contract. Such a contract might be a gamble, a share of common stock or
some other financial instrument, or insurance. In this section, we are interested in
cases in which it is possible to increase the wager in a gamble without changing the
odds, or to buy multiple units of a stock or financial asset without affecting its price,
or to buy arbitrary amounts of insurance coverage at a fixed rate.

4.1.1 Gambles

A simple state-contingent contract is a gamble. A gamble with variable wagers can be
represented by a random variable x̃ that is equal to the net winnings per dollar wagered.
For example, suppose that a gambler at a horse race is considering betting that a horse
Lucky Star will win a race and the odds on Lucky Star are 10:1. Then x̃ =  if Lucky
Star wins and x̃ = − otherwise. The gamble is said to be fair if E[ x̃] = , favorable if
E[ x̃] > , and unfavorable if E[ x̃] < .

Suppose the gambler bets α dollars. This results in state-contingent net winnings
αx̃, which is the gambler’s net transaction or net trade with the racetrack. In the ab-
sence of any gamble, the bettor has baseline wealth w̃, which is the bettor’s initial (pre-
contracting) state-dependent allocation of wealth. Hence, after betting αx̃ dollars, the
gambler’s final (post-contracting) state-contingent allocation of wealth is w̃ + αx̃.

Suppose that baseline wealth is non-random. Denote its constant value by w. If
u is the gambler’s VNM utility function, then he chooses the wager α∗ that solves the

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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following decision problem:

max
α

E[u(w + αx̃)] (4.1)

If it is possible to take either side of the gamble at the same odds, then α can be positive
or negative. Otherwise, there is the constraint that α ≥ .

This gambling story is of pedagogical rather than practical interest to us. Real gam-
bling, such as in casinos and at horse races, usually involves making bets that incur
risk but have zero or negative expected net payoff, and this is not consistent with our
maintained assumptions that the decision maker cares only about monetary payoffs
(as opposed to the fun of playing the game) and is risk averse. Nevertheless, we will
see that this decision problem (equation (4.1)) is a reduced form of several decision
problems of economic interest.

4.1.2 Portfolio selection

Portfolio selection involves allocating monetary resources to current consumption and
to the many available instruments for borrowing and saving or investing money. In
Chapter 6, we will see a broad overview of these instruments and the portfolio selection
problem. Here, we consider a simple version in which there is one investment period,
the money W to be invested is fixed, and there are two financial assets, one riskless
(e.g., bank accounts or government bonds) and one risky (e.g., corporate or municipal
bonds, stocks or commodity features).

Let q be the current cost of one unit of the riskless asset and let Y be the money
received at the end of the investment period for each unit of the asset. For example,
if the asset is a bank account and one unit means one dollar put in the account today,
then q =  and Y is one plus the interest rate. If the asset is a zero-coupon bond,
then Y is the face value of the bond and q is its current price in the bond market.

Let q be the price of the risky asset and let Ỹ be the state-contingent money re-
ceived at the end of the investment period for each unit of this asset. For example, if
the asset is a share of stock, then q is the current price per share in the stock market
and Ỹ is the dividend plus the price per share at the end of the investment period. Y

and Ỹ are called the payoffs of the riskless and risky assets, respectively.
A portfolio is 〈θ , θ〉, where θ and θ are the units of the riskless and risky assets,

respectively, that the investor purchases. The investor’s budget constraint in the asset
market is that the cost of the portfolio equal the wealth to be invested:

qθ + qθ = W.

The payoff or value of the portfolio 〈θ , θ〉 at the end of the investment period is

θY + θỸ .

Since the amount to be invested, and hence current consumption, are fixed, the
investor cares only abut the payoff of the portfolio. If the investor is an expected utility
maximizer with state-independent utility u, then the decision problem is

max
θ ,θ

E
[
u(θY + θỸ )

]
subject to: qθ + qθ = W.

(4.2)
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We can reformulate this as a single-variable unconstrained maximization problem by
solving the constraint for θ,

θ =
W − qθ

q
,

and substituting this into the portfolio payoff:

θY + θỸ =
W − qθ

q
Y + θỸ = W

Y

q
+ (qθ )

(
Ỹ

q
− Y

q

)
(4.3)

We can simplify equation (4.3) by replacing asset payoffs and prices by returns. An
asset’s (total) return is the payoff per dollar invested, or the asset payoff divided by the
asset price. Then R = Y/q is the riskless return and R̃  = Ỹ/q is the return on the
risky asset. Let α = qθ be the amount of money invested in the risky asset. Then we
can write the payoff equation (4.3) of the portfolio as

W R + α(R̃  − R ). (4.4)

Let w = W R. This is the future value of the wealth W to be invested; it is also the
investor’s baseline wealth if the investor does not buy any of the risky asset. Let x̃ =
R̃ −R. This is called the excess return of the risky asset. Then the value of the portfolio
is

w + αx̃ . (4.5)

We can see that the gambling problem in equation (4.1) is a reduced form of this
portfolio selection problem in equation (4.2). The “gamble” x̃ is favorable (E[ x̃] > )
if the expected value of the risky return is greater than the riskless return.

If it is impossible to sell the risky asset (“go short”), then there is a constraint that
α ≥ . If it is impossible to sell the riskless asset (which we can interpret as taking out
a bank loan for the purpose of investing in the risky asset), then there is a constraint
that α ≤ W . Selling an asset short may seem like an extreme action, but everyone who
issues a bond or stock or takes out a loan is doing exactly that. Hence, it is best to think
carefully before imposing restrictions on α.

4.1.3 Insurance

Another common class of state-contingent policies is insurance contracts. With some
types of insurance, such as life insurance, it is possible to choose from a range of levels
of coverage at roughly the same premium rate.

As a market transaction, buying such insurance is like buying a financial asset (i)
whose future payoff Ỹ is the state-contingent reimbursement by the insurance com-
pany to the policy holder (per unit of coverage) and (ii) whose current price q is the
premium (per unit of coverage). For example, a life insurance policy might cost $2
per $1000 of coverage. Then q =  and Ỹ =  in the event of death and Ỹ = 
otherwise.

If the only other instrument for borrowing and saving money is a riskless asset
with future value Y and current price q and if wealth W to be saved or used for
premiums is fixed, then purchasing insurance is like purchasing the risky asset in the
portfolio selection problem. The post-contracting allocation can be written w + αx̃,
where w is the baseline wealth in the absence of coverage, α is the number of dollars
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spent on premiums, and the “excess return” x̃ is the future value of the net transactions
with the insurance company, per dollar spent on premiums. The insurance is said to
be actuarially fair, favorable, or unfavorable if E[ x̃] = , E[ x̃] > , or E[ x̃] < ,
respectively.

When studying insurance, it is simplest to ignore the intertemporal aspect (premi-
ums are paid up front and reimbursements are received later) by assuming that R = 
(the real interest rate is 0). Then

αx̃ = α(R̃ − ) = θ (Ỹ − q ).

(θ is the number of units of coverage and Ỹ −q is the net transaction per dollar spent
on insurance.) We simplify by dropping the subscript from θ, R̃ , and Ỹ. Then

αx̃ = α(R̃ − ) = θ(Ỹ − q).

In this case, the insurance is actuarially fair if the expected value of the reimbursements,
E[Ỹ ], equals the premium q.

Our model has a problem; it is too similar to the portfolio selection model. Insur-
ance is usually actuarially unfair. However, a risk-averse decision maker with state-
independent utility and state-independent wealth would not take on a gamble with
E[ x̃] ≤  hence would not buy insurance that is at best actuarially fair. The demand for
insurance is due to either state-dependent preferences over money or state-dependent
wealth. You are to explore insurance with state-dependent preferences in an exercise.
I will consider the case of state-dependent wealth. This means that the baseline wealth
is a random variable w̃, and the decision maker chooses coverage to solve.

max
α

E[u(w̃ + αx̃)]. (4.6)

I also assume that it is possible to completely insure against the fluctuations in
wealth. This means that there is some level ᾱ of coverage such that final wealth w̃ + ᾱ x̃
is non-random (and hence equal to E[w̃] + ᾱE[ x̃] for sure).

For example, suppose that a person faces the risk of a monetary loss of L dollars,
which might be due to theft, fire or a lawsuit. Let W be wealth without the loss (state
s), so that W − L is wealth with the loss (state s). Suppose he can buy insurance that
pays $1 in the event of the loss and costs q per unit of coverage. Then the following
table shows how we determine the allocation (act) that the decision maker faces when
he purchases α units of coverage:

State Baseline Reimbursements Net transaction Final wealth
wealth per unit per unit given α units

s w̃(s) Ỹ (s) x̃(s) = Ỹ (s) − q z̃(s) = w̃(s) − αx̃(s)
s W  −q W − αq
s W − L   − q W − L + α − αq

The insurance is actuarially fair if q is equal to the probability of state s. The decision
maker gets full coverage by buying L units of insurance. His final wealth is then W−qL
in both states.

If, as a mental exercise, we treat full coverage as the status quo, this insurance prob-
lem with state-dependent wealth is equivalent to the gambling and portfolio selection
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problems. With full coverage, the decision maker’s “baseline wealth” is non-random.
Reducing coverage is then like taking a gamble or making a risky investment. To see this
formally, we just have to redefine the variables. Let the choice variable be the number
β of units below full coverage: β = ᾱ − α. Let the baseline wealth w̄ be the risk-free
wealth given full coverage: w̄ = w̃ + ᾱ x̃. Let ỹ be the change in net transactions by
reducing coverage by one unit: ỹ = −x̃. Then

w̃ + αx̃ = w̃ + (ᾱ − β) x̃ = w̃ + ᾱ x̃ − βx̃ = w̄ + βỹ .

If the insurance is actuarially unfavorable (E[ x̃] < ), then reducing coverage away
from full coverage is like taking on a favorable gamble (E[ ỹ] > ).

Exercise 4.1. You have just moved to the United States from Mexico. Your retirement
savings consist of peso-denominated bonds issued by the Mexican government. You
will then spend your retirement money in the United States. Suppose that there is no
chance of default by the Mexican government, and your bonds will be worth 1 million
pesos at maturity. However, the value of your nest egg in US$ is uncertain because of
exchange-rate uncertainty. Suppose also that the future value of the peso is either 5
pesos/dollar (state 1) or 2 pesos/dollar (state 2), and you believe these states will occur
with probabilities π = / and π = /, respectively.

You can acquire a forward contract that requires you to exchange, for each unit of
the contract you acquire, 1000 pesos for US$350. The current price of this contract is
zero.

In the questions below, let an allocation or act be the state-dependent dollar value of
your retirement funds, after liquidating any holdings of the forward contract. Assume
that you are a VNM expected utility maximizer with risk-averse, state-independent
preferences and differentiable utility.

You are to draw some things on the graph in Figure 4.1.

a. Mark your baseline allocation on the graph.

b. Derive the budget constraint your allocations must satisfy, and identify the state
prices.

c. Draw the budget line (assuming you can both buy and sell the forward contract)
and a vector from the budget line pointing in the direction of the state prices.

d. Using just the information you have been given, what can you say about the posi-
tion of the optimal allocation in the budget line?

e. Select a possible optimal allocation. Draw a plausible indifference curve through
the allocation. Indicate the slope of the indifference curve where it crosses the ◦ line
by drawing a vector perpendicular to the indifference curve at that point.
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4.2 Techniques for characterizing market decisions

4.2.1 Elimination of dominated choices

We can often say a lot about the solution to a decision problem—even when we do not
have full information about the objectives and constraints—by ruling out dominated
choices.

For example, recall the gambling problem:

max
α

E[u(w + αx̃)]. (4.7)

Let α∗ be the solution. Assume that the bettor is risk averse and has increasing utility.
Suppose that it is possible to wager both positive and negative amounts at the same

odds. Knowing only that the decision maker is risk averse, we can conclude that α∗ = 
if E[ x̃] = . The act when α =  is the risk-free act w. For α �= , the decision
maker faces the risky act w + αx̃. Since E[w + αx̃] = w + αE[ x̃] = w, the risk averse
decision maker prefers to get w for sure than w+αx̃. This is an example of a dominance
argument.

The implication for the portfolio selection problem is that, if the expected return
of the risky asset equals the riskless return, then the investor should only purchase the
riskless asset. The implication for the insurance problem is that, if the insurance is
actuarially fair, then the consumer should buy full insurance (β∗ = ).

Similarly, suppose that E[ x̃] < . Then the act for α =  second-order stochas-
tically dominates the act for α > , since the former has no risk and has a higher
expected value than the latter. Therefore, α∗ ≤ . If E[ x̃] > , then the same argu-
ment tells us that α∗ ≥ .

If x̃(s) >  for all s, then w + α ′ x̃ statewise dominates w + α ′′ x̃ whenever α ′ > α ′′.
Because the decision maker always prefers more of the gamble, there is no solution to
the problem in equation (4.1) unless there is an exogenous limit on the size of α. This
is an example of an arbitrage opportunity. If α can be negative, then arbitrage is also
possible if x̃(s) <  for all s. In the portfolio problem, arbitrage is possible if the return
of the risky asset is higher than or lower than the riskless return in every state.

Here is a more sophisticated dominance argument. Suppose that an investor wants
to invest W dollars in two risky assets that have returns R̃  and R̃, respectively. Let
α and α be the dollars invested in the two assets. Then the return on the portfolio is
α R̃  + α R̃. Given that the amount to be invested is fixed, the investor is maximizing
the expected utility of the portfolio return:

max
α ,α

E
[
u(α R̃  + α R̃ )

]
subj. to: α + α = W

Proposition . Perfect diversification (α = α = W /) is optimal if R̃  and R̃ are
symmetrically distributed.

Two random variables x̃ and ỹ are symmetrically distributed if their joint distribution
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is the same when the roles for x̃ and ỹ are reversed.1 For example, identically and
independently distributed random variables are symmetrically distributed. The proof
involves showing that the portfolio is less risky when α = α = W /.

Proof. We can make the problem a single-variable unconstrained maximization prob-
lem by letting α = α and substituting the constraint α = W − α into the portfolio
return. Then the return when α is invested in asset 2 is

R̃ (α) = (W − α)R̃  + αR̃ .

I will show that R̃ (W /) is less risky than R̃ (α) for α �= W /. I will use the random-
variable characterization of increasing risk.

Let

ε̃ = R̃ (α) − R̃ (W /)

= (W − α)R̃  + αR̃ − (W /)R̃  − (W /)R̃

= ( W
 − α)(R̃  − R̃ ).

Since R̃ (α) = R̃ (W /) + ε̃, it is also true that R̃ (α)
d
= R̃ (W /) + ε̃. The proof is completed

by showing that E
[

ε̃
∣∣ R̃ (W /)

]
= .

Observe that

E
[

ε̃
∣∣ R̃ (W /)

]
= E

[
ε̃
∣∣ (W /)(R̃  + R̃ )

]
= E

[
ε̃
∣∣ R̃  + R̃

]
= ( W

 − α)E
[

R̃  − R̃
∣∣ R̃  + R̃

]
.

Since R̃  and R̃ are symmetrically distributed,2 E
[

R̃  − R̃
∣∣ R̃  + R̃

]
= . There-

fore, E
[

ε̃
∣∣ R̃ (W /)

]
= . �

Exercise 4.2. Suppose that in a market for state-contingent contracts with two states,
there are three assets, with payoffs and prices as follows:

Payoffs
Asset Price State 1 State 2

x $200 $100 $300
y $150 $225 $75
z $150 $120 $160

1. For simple random variables, this means that

Prob
[
x̃ = z & ỹ = z

]
= Prob

[
ỹ = z & x̃ = z

]
for any numbers z and z.
2. For any random variables x̃ and ỹ that are symmetrically distributed,

E
[

x̃ − ỹ | x̃ + ỹ
]
= E

[
ỹ − x̃ | ỹ + x̃

]
.

The left-hand side is minus the right-hand side, and so both must be zero. That is, E
[

x̃ − ỹ | x̃ + ỹ
]
= .



Techniques for characterizing market decisions 87

The problem is to choose the optimal portfolio given a fixed total investment. Assume
that the states have equal probability. Assume first that short sales are not possible.
What can you say about the optimal portfolio? Now assume that short sales are possible
(it is possible to buy a negative amount of an asset), and again describe the optimal
portfolio. Note: This is a trick question.

4.2.2 First-order conditions

For any single-variable maximization problem

max
x∈X

V (x)

with a continuously differentiable objective function V , a necessary condition for an
interior point x∗ of X to be a solution is that V ′(x∗) = . This is called the first-order
condition. Any solution x∗ to the first-order condition V ′(x∗) =  is a global solution
to the maximization problem if V is concave (e.g., if V ′′(x) ≤  for all x). This is called
the second-order condition.

Solving the first-order condition can be a simple and mechanical method for find-
ing the solution to such a maximization problem, even if the method does not provide
much intuition. The only trick to applying it to maximization problems in which there
is uncertainty is knowing how to differentiate a function that contains the expectations
operator. For example, the objective function in a maximization problem might have
the form

V (α) = E
[

f (α, x̃)
]
,

where x̃ is a random variable. In the problem in equation (4.1) of choosing a wager α
in a gamble for which the net winnings are x̃, f (α, x̃) = u(w + αx̃) and the objective
function is V (α) = E[u(w + αx̃)]. Note that α, the choice variable, cannot be a ran-
dom variable since supposedly the decision maker controls α. Note also that V (α) is
an ordinary function; thanks to the expectations operator, there is nothing uncertain
about the value of the objective function once the DM picks α. That is, the realization
of the DM’s VNM utility may be uncertain, but the DM’s expected utility is not.

4.2.3 Differentiation of expected values

Fortunately, finding the derivative of V (α) is not tricky at all. Just remember the fol-
lowing mantra: The derivative of the expected value is equal to the expected value of the
derivative. That is,

d
dα

E
[

f (α, x̃)
]

︸ ︷︷ ︸
derivative of EV

= E
[

d
dα

f (α, x̃)
]

︸ ︷︷ ︸
EV of derivative

. (4.8)

When calculating d
dα f (α, x̃), x̃ is teated as a constant (whose value is random). For

example, suppose that x̃ equals 2 or 3 with equal probability. Then

E
[

f (α, x̃)
]
=




f (α, ) +



f (α, ),
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and so

d
dα

E[ f (α, x̃)] =
d

dα

(



f (α, ) +



f (α, )
)

=



d
dα

f (α, ) +



d
dα

f (α, )

= E
[

d
dα

f (α, x̃)
]

.

In the gambling problem, where V (α) = E[u(w + αx̃)],

V ′(α) =
d

dα
E [u(w + αx̃)] = E

[
d

dα
u(w + αx̃)

]
= E

[
x̃u ′(w + αx̃)

]
. (4.9)

Therefore, the first-order condition is

E[ x̃u ′(w + αx̃)] = . (4.10)

The second-order condition is easy to check. If d

dα f (α, x̃) <  for all possible
values of x̃, then

V ′′(α) = E
[

d

dα f (α, x̃)
]
< .

(In general, if f is concave in α for all possible x̃, then E[ f (α, x̃)] is concave in α.) In
this gambling problem,

d

dα u(w + αx̃) = x̃u ′′(w + αx̃), (4.11)

which is negative for x̃ �=  since x̃ >  and u ′′ < .
Suppose, for example, that x̃ =  with probability π and x̃ = − with probability

 − π, and that u(z) = log z. Then

V (α) = ( − π) log(w − α) + π log(w + α).

Therefore,3

V ′(α) = ( − π)
( −

w − α

)
+ π

(


w + α

)
.

The solution to the first-order condition V ′(α) =  is

α∗ =
(π − )w


.

When the gamble is fair, π = / and α∗ = . When the gamble is favorable, π > /
and α∗ > .

3. You can see that this is the expected value of the derivative of u(w+αx̃), as given by equation (4.9), since
−/(w −α) = d

dα log(w −α) is the derivative of u(w +αx̃) when x̃ = − and /(w + α) = d
dα log(w + α)

is the derivative when x̃ = .
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4.2.4 Local risk neutrality

Solving the first-order condition is obviously useful for calculating examples like the
one above. We can also prove some general theorems using derivatives. Suppose that
we want to show that the solution to max

α
V (α) is greater than some number α. It

suffices to show that V is concave and V ′(α ) > , because then the graph of V must
look something like V below, instead of V or V:

Figure 4.1

α

α

V (α)

V (α)
V (α)

α∗

You can see from this picture that

V ′
 (α ) <  → α∗ < α

V ′
 (α ) =  → α∗ = α

V ′
 (α ) >  → α∗ > α .

We can use this to prove that if u is differentiable (and concave and increasing),
then it is always optimal to take some stake in a favorable gamble, even if the gamble
is risky. In other words, when the gamble is favorable, there is always some stake small
enough that the risk premium of the gamble is lower than the positive expected return.
This property is known as local risk neutrality.

Differentiability of u is not a mere technical assumption that simplifies the proof.
The mathematical intuition behind the result is that, because u is differentiable, it can
be locally approximated by a linear—and hence risk-neutral—utility function. We will
see a graphical example in Section 4.2.5 in which u is not differentiable and local risk
neutrality does not hold.

Proposition . Assume that u : R → R is differentiable and concave and that u′ > .
Assume that x̃ is a random variable with E[ x̃] > . Let α∗ be the solution to

max
α

E[u(w + αx̃)].

Then α∗ > .

Proof. Let V (α) = E[u(w + αx̃)], which is the objective function in the maximization
problem. V (α) is concave, as shown in equation (4.11). We need to show that V ′() >
.

From equation (4.9),

V ′(α) = E
[

x̃u ′(w + αx̃)
]
.



90 Market Decisions in the Presence of Risk Chapter 4

Warning: For arbitrary values of α, we cannot put a sign on E[ x̃u ′(w+αx̃)]. Writ-
ing

E[ x̃u ′(w + αx̃)] = E[ x̃]E[u ′(w + αx̃)] > 

is a mistake because E[ ỹ z̃] = E
[

ỹ
]
E[ z̃] for two random variable ỹ and z̃ if and only if

ỹ and z̃ are uncorrelated (by definition). If α >  then x̃ and u ′(w + αx̃) are negatively
correlated: when x̃ is higher, u ′(w + αx̃) is lower because u is concave.

However, we are only asked to find V ′(α) at α = :

V ′(α) |α= = E
[

x̃u ′(w)
]
= E[ x̃]

+
u ′(w)

+
> .

�

Here are the implications of this result for portfolio selection and demand for in-
surance:

• In the portfolio selection problem, if the expected return of the risky asset is greater
than the expected demand of the riskless asset, then the decision maker should buy
some amount of the risky asset.

• In the insurance problem, if the insurance is actuarially unfavorable, underinsur-
ing is like taking on a favorable gamble. Therefore, the decision maker should not
fully insure (β∗ > ).

Exercise 4.3. Consider a portfolio selection problem in which a risk-averse investor
has $1 of wealth to invest, and there are two risky assets available whose gross returns,
per dollar invested, are x̃ and ỹ. Assume that x̃ and ỹ are independent, and have the
same mean, although they may not be identically distributed. Show that the investor
will not put all his money in the same asset (e.g., not all in x̃). This will involve differen-
tiation, and you have to use the fact that for a random variable z̃ (that is not constant)
and a decreasing function f , E[ z̃ f ( z̃)] < E[ z̃]E[ f ( z̃)].

Exercise 4.4. We showed that if utility is differentiable, then a person is willing to
accept some share of a favorable gamble. E.g., we concluded that if insurance is not
actuarially fair, then a person will not buy full insurance, and if an investor divides his
portfolio among a riskless asset and a risky asset with higher expected return, then he
will invest at least some amount in the risky asset.

a. Suppose that one can buy insurance that is actuarially fair, except for a fixed fee that
does not depend on the extent of coverage. Will a risk-averse person buy full insurance
if he buys any at all? Explain.

b. Suppose that there is a fixed broker’s fee on stock market transactions, that does
not depend on the size of the transaction. Is it still true that an investor will put at least
some of his wealth into a risky stock whose expected return is higher than the return
on the riskless asset?

c. Exercise 4.3 shows that, if an investor divides his portfolio among a riskless assets
and several risky assets with independent returns that are higher than the return on
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the riskless asset, then if the investor holds any of the riskless asset, he also holds some
amount of each of the risky assets.

We can roughly say that putting money into a bank account is a riskless invest-
ment. There are also zillions of risky investments out there in the world with roughly
independent returns and with expected returns that are higher than the return on a
bank account.

Do you have any money in a bank account? Do you also hold a little bit of each of
the zillions of risky investments mentioned above, as our theory would predict? Why
not? (At most a short paragraph is sufficient.)

4.2.5 Quiche and beer

The third technique for characterizing solutions to such decision problems is a graph-
ical tool. When the decision problem reduces to the choice of monetary allocations
(acts) with two states, we can represent the allocations as points on the plane, as in
Section 3.1.1. We can then illustrate the optimal choice by drawing the choice set or
“budget” set and indifference curves. The picture can end up looking like pictures from
consumer theory, but with a different interpretation. Instead of choosing consumption
bundles consisting of quiche and beer, the decision maker chooses consumption bun-
dles consisting of money in state 1 and money in state 2.

For example, consider the gambling problem with net winnings x̃. Suppose that
there are two states, s and s. Assume that arbitrage is not possible, which means that
x̃(s ) and x̃(s ) are not both positive or both negative. Without loss of generality, we
can assume x̃(s ) >  and x̃(s ) < .

Let z and z be final wealth in states s and s, respectively, so that an allocation is
a point 〈z , z〉 on the plane. Given a stake α in the gamble, the investor’s allocation is

z = w + αx̃(s ) (4.12)

z = w + αx̃(s ) (4.13)

As we vary α, we trace out the set of possible acts, which I will call the DM’s budget
set. By looking at this budget set, we can see that betting involves exchanging money
in state 2 for money in state 1.

There are two ways to describe the budget set using vectors. One way is to write an
act as

〈z , z〉 = 〈w , w〉 + α〈x̃(s ), x̃(s )〉.

This means that the budget set is a line through 〈w , w〉 that extends in the direction
〈x̃(s ), x̃(s )〉. This is drawn in Figure 4.2 for x̃(s ) =  and x̃(s ) = −/, assuming
that w = .

Another way is to write the “budget constraint” for an act is by solving equa-
tion (4.12) for α,

α =
z − w
x̃(s )

and plugging the answer into equation (4.13).

z = w +
z − w
x̃(s )

x̃(s )
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Figure 4.2
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The budget set for the bet that pays $ in state s and−$ in state s when baseline wealth
is $10 in both states.

Rewriting yields

−x̃(s )z + x̃(s )z = −x̃(s )w + x̃(s )w .

If we let p = −x̃(s ) and p = x̃(s ), then we obtain

p z + p z = pw + pw .

This looks like the budget constraint of a trader in a market for quiche and beer if
consumption of quiche and beer are z and z, respectively, if the prices of quiche and
beer are p and p, respectively, and if the trader arrives to the market with w units
of quiche and w units of beer (this is called the trader’s endowment). Hence, we can
call p and p state prices; they are the implicit prices of money in states s and s,
respectively.4 These state prices depend on the asset prices and payoffs in the portfolio
selection problem and on the insurance premium rates in the insurance problem. In
the example illustrated in Figure 4.2, p =  and p = . That is, money in state 2 is
twice as “expensive” as money in state 1, meaning that a trader has to give up $2 in
state 1 to get $1 in state 2.

As when the goods are quiche and beer, the budget line passes through the en-
dowment (it is always possible to not trade or gamble and just get the baseline level of
wealth) and is perpendicular to the price vector. This is illustrated in Figure 4.3.

Consider what happens when the gamble changes (because asset prices change or
the premium rate changes). If x̃(s ) remains fixed at 1 and x̃(s ) changes to −, then

4. This reduction of the gambling problem with a single gamble to a standard consumer choice problem
does not generalize to a larger number of states unless the number of gambles increases with the number
of states. In consumer theory, if there are three states, the budget set is a plane that is perpendicular to the
price vector. With a single gamble but three states, the budget set in the 3-dimensional set of acts is still a
line.
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Figure 4.3
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The budget set is perpendicular to the state prices.

the ratio p/p of state prices increases from 1/2 to 1. The budget line rotates around
〈w , w〉 as shown in Figure 4.4.

Note that I have not yet mentioned the probabilities of the states. The probabil-
ities affect the preferences over allocations, not the set of affordable allocations. In
Section 3.1.3, we learned the following properties of each indifference curve for state-
independent preferences:

• Where it crosses the ◦ line, it is perpendicular to the vector of probabilities, and
hence it is tangent to the line containing those allocations with the same expected
value.

• If the decision maker is risk neutral, the indifference curve is equal to this line.
• If the decision maker is risk averse, the indifference curve is strictly convex and

lies above this line.

When the gamble is fair (E[ x̃] = ) is zero, the state-prices vector is proportional
to (points in the same direction as) the vector of probabilities. The fact that the in-
vestor should not buy any of the risky asset in this case is illustrated in Figure 4.5.
Every affordable act other than the baseline-wealth act on the ◦ line lies below the
indifference curve through the baseline wealth.

Suppose that expected value of the excess returns is greater than zero. Then the
budget line is no longer tangent to the indifference curve through the baseline wealth,
and hence it cuts above this indifference curve. Therefore, there is some demand for
the risky asset that gives higher utility than no demand. This is illustrated in Figure 4.6.

Try to visualize how, no matter how little state prices differ from the probabilities,
the budget line must cut above the indifference curve through the baseline wealth. This
visualization requires that you zoom in on the area around the baseline wealth, letting
the smooth indifference curve look flatter and flatter as you do so. This is not possible if
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Figure 4.4
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Change in the budget set when the price of the risky asset changes from 2 to /, and
thus the relative state prices change from p/p = / to p/p = .

Figure 4.5
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Optimal choice in the portfolio selection problem is the baseline allocation if the expected
excess return is zero. In this example, probabilities and state prices are both (proportional
to) 〈/, /〉.
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Figure 4.6
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Local risk neutrality. Even a small change positive expected return of the risky asset
causes the budget line to rotate and cut above the indifference curve through the base-
line wealth. State prices are no longer equal to the probabilities.

the indifference curve has a kink at the baseline wealth, which can happen if the utility
function is not differentiable. Figure 4.7 illustrates that local risk neutrality does not
hold in this case.

In Section 4.1.3, we showed how the insurance problem can be made equivalent
to the portfolio problem. Hence, state prices and the diagrams work pretty much the
same way. There is one difference, however. A change in the price of insurance causes
the budget line to rotate around the true random baseline wealth w̃, whereas the risk-
free wealth w shifts. If x̃ is the net transaction with the insurance company per dollar
spent on premiums,, then the budget constraint in the two-state case is

−x̃(s )z + x̃(s )z = −x̃(s )w̃(s ) + x̃(s )w̃(s ).

If state s is the state where there is a loss, then x̃(s ) >  and x̃(s ) < . Let p =
−x̃(s ) and p = x̃(s ). The budget constraint is then

p z + p z = pw̃(s ) + pw̃(s ).

The endowment point 〈w̃(s ), w̃(s )〉 thus has different amounts of money in the two
states.

Suppose that you face a risk of fire, which you treat as a purely monetary loss of
$K . Without the fire (state s), your wealth is w̃(s ) = $K , but with the fire (state
s), your wealth is w̃(s ) = $K . For the sake of drawing a picture, let’s assume that
the probability of the fire is quite high: π(s ) = /.

If q, the premium per dollar of coverage, is equal to 1/3, then the insurance is
actuarially fair. The net transactions per dollar of premium are x̃(s ) =  and x̃(s ) =
−. Hence, the state prices are p =  and p = , which are proportional to the state
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Figure 4.7
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A violation of local risk neutrality because the utility function is not differentiable.

probabilities π(s ) = / and π(s ) = /. Full insurance gives wealth $60 for sure,
and so the budget line crosses the ◦ line at 〈, 〉.

If instead q = /, the insurance is actuarially unfavorable. The net transactions
are x̃(s ) =  and x̃(s ) = −, and the state prices are p = p = . Full insurance
gives wealth $50K for sure. Compared to q = /, the budget line rotates around
the endowment 〈, 〉 and intersects the ◦ line at 〈, 〉. Money in the state
s becomes relatively more “expensive,” and the decision maker responds by reducing
coverage. The budget lines for q = / and q = /, and the indifference curves through
the corresponding optima, are shown in Figure 4.8.

4.3 Comparative statics

Models have endogenous variables, which are determined in equilibrium by the model,
and exogenous parameters, which are fixed outside the model. For example, in a duopoly
model, the firm’s production technologies are fixed and the market prices are deter-
mined by the model. In a model of consumer optimization, prices are fixed and the
consumer’s demand is determined by the model.

Comparative statics involves comparing the equilibrium values of the endogenous
variables for different values of the exogenous parameters.5 For example, in consumer
theory we might compare a consumer’s demand at one price with her demand at an-
other price.6 In this section, I will present some basic methods for comparing the

5. This is called sensitivity analysis in some other disciplines.
6. The answer might be phrased, “If the price changes from p to p′, then demand shifts from x to x ′.” How-
ever, this sentence should not be interpreted as describing a dynamic process by which demand responds to
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Figure 4.8
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A shift in the premium in the insurance problem. The zero-insurance, baseline wealth is
state-dependent. The budget line rotates around this baseline wealth.

solutions to single-variable maximization problems, with application to problems in-
volving risk.

4.3.1 Changes to the decision maker’s welfare

z Consider a class of single-variable maximization problems in which the choice vari-
able is α and within which the objective function and constraint set may depend on
exogenous parameters. Consider two instances of the problem:

max
α∈A

V (α) max
α∈A

V (α)

(Problem 1) (Problem 1)
(4.14)

Let α∗
 and α∗

 be the solutions to Problems 1 and 2, respectively, and let v∗
 = V (α∗

 )
and v∗

 = V (α∗
 ) be the corresponding maximum values.

If V and V both measure the decision maker’s utility in a comparable way, then
we can ask whether the decision maker is better off in Problem 1 or Problem 2. For ex-
ample, Problems 1 and 2 might both be portfolio selection problems, but with different
excess returns x̃ and x̃:

V (α) = E[u(w + αx̃ )] V (α) = E[u(w + αx̃ )] .

a shift in prices.
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If x̃ second-order stochastically dominates x̃ , does the investor attain higher expected
utility on Problem 2 than in Problem 1? That is, is v∗

 > v∗
 ?

This is true if we can show that, whatever the investor does in Problem 1, he can do
better in Problem 2, perhaps even if he does the same thing as in Problem 1. Formally,
to show that v∗

 ≥ v∗
 or v∗

 > v∗
 , it suffices to find some α ∈ A such that V (α) ≥

V (α∗
 ) or V (α) > V (α∗

 ). In particular, we can start by checking whether α∗
 ∈ A

and V (α∗
 ) ≥ V (α∗

 ) or V (α∗
 ) > V (α∗

 ).
For example, in the comparison of the portfolio selection problems, for any in-

vestment α �= , w + αx̃ second-order stochastically dominates w + αx̃ , and hence
E[u(w +αx̃ )] > E[u(w + αx̃ )]. In particular, V (α∗

 ) > V (α∗
 ), and hence v∗

 > v∗
 ,

if α∗
 �= . In words, the decision maker is better off in Problem 1 than in Problem

2 even if he just chooses in Problem 2 the investment that was optimal in Problem 1
(and he may be able to do even better by adjusting his investment).

4.3.2 Changes to the decision maker’s action

Comparing the solutions α∗
 and α∗

 is typically more difficult. We might ask, for ex-
ample, whether the optimal investment is higher in the portfolio problem with s.o.s.d.
excess returns. I will present a method for answering such a question and two exam-
ples where the method works. However, I will not attempt a thorough treatment of
this topic because typically it is either very difficult or impossible to obtain an answer
without specific assumptions on the utility functions or distributions.

Suppose we want to show that α∗
 > α∗

 . Suppose that V and V are both concave
and differentiable. Then, from Section 4.2.2, it suffices to show that V ′

 (α∗
 ) > . If α∗


is an interior solution, then V ′

 (α∗
 ) = , and hence it suffices to show that V ′

 (α∗
 ) >

V ′
 (α∗

 ).
Most textbooks that discuss comparative statics for decision problems under un-

certainty present the following example about precautionary savings, because it is one
of the few that works out with only a minor extra assumption—that the third derivative
of the utility function be negative. Here is the scenario

Consider a household that lives two periods, with income y in period 1 and
uncertain income ỹ in period 2. The household chooses consumption in pe-
riod 1, saves or borrows the difference between period 1 income and period
1 consumption at a known return R, and consumes whatever income/wealth
that remains in period 2. Denote consumption in period 1 by c and the un-
certain consumption in period 2 by c̃. Utility is u (c ) + u (c ), and the
household maximizes expected utility u (c ) + E[u (c̃ )]. Assume that u

and u are differentiable, strictly increasing, and strictly concave, and defined
for all real numbers (so we don’t have to worry about whether consumption is
negative in period 2 when period 2 income is low).

First we formulate the problem as an unconstrained maximization problem with
choice variable c . The household’s budget constraint is

c̃ = R(y − c ) + ỹ .

By substituting the budget constraint into the objective function, we get an uncon-
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strained maximization problem:

max
c

u (c ) + E
[
u (R(y − c ) + ỹ )

]
. (4.15)

Denote the objective function by V (c ). Now we take the first and second derivatives
of the objective function:

V ′(c ) = u ′
 (c ) − RE[u ′

 (R(y − c ) + ỹ )] (4.16)

V ′′(c ) = u ′′
 (c ) + R E[u ′′

 (R(y − c ) + ỹ )] (4.17)

We can see that V ′′(c ) <  for all c, and hence V is concave, since u ′′
 <  and u ′′

 < .
Now we will show that when ỹ is less risky, V ′(c ) is higher for all c , and hence the
optimal c is higher as long as u ′′′

 > . Therefore, when future income is less risky,
savings is lower. This response of savings to risk is called the precautionary motive for
savings.

Let ỹ ′
 be less risky than ỹ. Write V ′(c ; ỹ ) and V ′(c ; ỹ ′

 ) to indicate that the
derivative depends on the distribution of period 2 income. The derivatives V ′(c ; ỹ )
and V ′(c ; ỹ ′

 ) have a common term, u ′
 (c ), and hence we can ignore it when checking

which derivative is higher. I.e., we want to show that

−E[u ′
 (R(y − c ) + ỹ )] < −E[u ′

 (R(y − c ) + ỹ ′
 )] (4.18)

or equivalently, that

E[u ′
 (R(y − c ) + ỹ )] > E

[
u ′

 (R(y − c ) + ỹ ′
 )
]

(4.19)

Since ỹ ′
 is less risky than ỹ, (by definition) E[ f ( ỹ ′

 )] > E[ f ( ỹ )] for any concave
f , which is the same as saying that E[ f ( ỹ ′

 )] < E[ f ( ỹ )] for any convex f . Thus,
inequality (4.19) holds if u ′

 (r(y − c ) + y ) is convex in y. f (y) is convex in y if and
only if f (a + y) is convex in y for any constant a. Thus, (4.19) holds if u ′

 is a convex
function. The second derivative of u ′

 is u ′′′
 , and so u ′

 is convex if u ′′′
 > .

At this point, you probably do not want to see what a hard problem looks like. You
may also be wondering why I called u ′′′ >  a “minor assumption.” While u ′′ < 
has the interpretation of risk aversion, who would want to make claims about the third
derivative of their utility function? Actually u ′′′ >  also has some empirical content.
First, you can check that constant or decreasing absolute risk aversion implies u ′′′ > 
(see, for example, the graph of u ′ for a constant relative risk aversion utilty function
in Figure 4.9. Second, you can also check that u ′′ cannot always be negative, because
(given that u ′′ < ) this would imply that u ′ is eventually negative.

(That doesn’t mean, of course, that u ′′′
 is negative for all values, as is seen in Fig-

ure 4.10. However, it does mean that the assumption that u ′′′ is convex is not totally
outrageous, and under this assumption, we can conclude that consumption is lower
and thus savings is higher with uncertain income compared to with certain income.
This corresponds to the intuitive notion that one motive for saving is precautionary
savings to guard against fluctuations in future income.

Suppose we try the same trick to show that in the portfolio problem, the optimal
investment is higher when the excess return is less risky? We have to check that

V ′(α) = E
[

x̃u ′(w + αx̃)
]
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Figure 4.9

The graph of u ′(x) when u(x) = x / . u ′(x) is convex.
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Figure 4.10

The graph of u(x) = (/(x/ + ))x + (x//(x/ + ))x / :
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becomes larger when x̃ is less risky. This means that xu ′(w + αx) is concave. Unfortu-
nately, there is no simple condition on u that guarantees that this condition is satisfied.
It is not true for the CARA utility function, for example. However, you can verify that
xu ′(w + αx) is concave when u(z) = zb for some b ∈ (, ).

Exercise 4.5. Show that if a utility function u is differentible and strictly increasing
and exhibits constant or decreasing absolute risk aversion, then u ′′′ > .

Exercise 4.6. Consider a firm that produces a quantity y of a single good at known
cost c(y). Profit when the price is p is py − c(y). We compare two cases: (a) when
the price is uncertain, equal to the random variable p̃ (the “uncertainty case”), and (b)
when the price is certain, equal to p̄ = E

[
p̃
]

for sure (the “certainty case”).

a. Scenario: The firm chooses the level of output before observing the price of output.
The owner of the firm is risk neutral with respect to profits.

1. State the maximization problems for the two cases and determine whether or not
the two problems are equivalent.

2. How do the solutions and values of the two maximization problems compare?

b. Scenario: The firm chooses the level of output before observing the price of output.
The owner of the firm is a risk-averse expected utility maximizer with respect to profits,
for a strictly increasing and strictly concave utility function u. That is, utility when
output is y and the price is p is u(py − c(y)).

1. Let U (y) be the objective function for the uncertainty case and let V (y) be the
objective function for the uncertainty case. State the formulae for U and V . For
which case is the maximization problem equivalent to when the owner is risk neu-
tral?

2. Assuming only that each problem has a non-zero solution, compare the values of
the maximization problems.

3. Prove: If y and y are solutions with and without uncertainty, respectively, then
y ≤ y.
(You should not use calculus nor add any auxilary assumptions on u. Instead, you
should show that, if y is a solution to the certainty problem and y > y, then
the profit given y second-order stochastically dominates the profit given y. For
this purpose, you can use the fact that, if x̃ is a non-degenerate random variable
and if α , α , β , β are such that α > α and E

[
α x̃ − β

] ≤ E
[
α x̃ − β

]
, then

α x̃ − β second-order stochastically dominates α x̃ − β.)
4. Assume for the rest of this part that c and u are differentiable. Provide the formulae

for U ′(y) and V ′(y) and simplify the first-order condition in the certainty case.
5. Can you determine whether U ′(y) < V ′(y) or U ′(y) > V ′(y) for all y?
6. Show that, if y is an interior solution in the certainty case, then U ′(y ) < .
7. Conclude that, if y and y are solutions with and without uncertainty, respectively,

then y < y.
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c. Scenario: The firm chooses output after observing the price. The firm is risk neutral
with respect to profit. Viewed from before observing the price, the decision problem
of the firm is to choose a plan y : R+ → R+ which states the level of output y(p) as a
function of the observed price p.

Assuming only that each problem has a solution, show that the (ex-ante) value of
the problem in the uncertainty case is higher than that of the problem in the certainty
case. Show that the values are the same only if, in the uncertainty case, there is a
solution in which the output level does not depend on the price.

Exercise 4.7. Suppose that a person can work at a random hourly wage w̃ (always
strictly positive), with mean w̄ (the person might work on a commission basis, or be
an entrepreneur). The money earned is used to buy a single consumption good with
price 1. Let the utility from working x hours and consuming c units be

U (c , x) = u(c) − x ,

where u is a strictly increasing, strictly concave function. The person maximizes ex-
pected utility.

a. Denote by V (x) the expected utility as a function of the number of hours worked.
Write down V (x) in terms of x, w̃ and u.

b. Write down the first-order conditions for expected utility maximization.

c. Verify that the second-order condition for a stationary point to be a unique global
maximum is satisfied.

d. Determine whether the person will work less or more the riskier the wage is, as-
suming that u(c) = c /.

Exercise 4.8. A risk-averse expected-utility maximizer has initial wealth w and utility
function u. She faces a risk of a financial loss of L dollars, which occurs with prob-
ability π. An insurance company offers to sell a policy that costs P dollars per dollar
of coverage (per dollar paid back in the event of a loss). Denote by x the number of
dollars of coverage.

a. Give the formula for her expected utility V (x) as a function of x.

b. Suppose that u(z) = −e−λz , π = /, L = , and P = /. Write V (x) using
these values. There should be three variables, x, λ and w. Find the optimal value of x,
as a function of λ and w, by solving the first-order condition (set the derivative of the
expected utility with respect to x equal to zero). (The second-order condition for this
problem holds but you do not need to check it.) Does the optimal amount of coverage
increase or decrease in λ?

c. Repeat b, but with P = /.

d. You should find that for either b or c, the optimal coverage is increasing in λ, and
that in the other case it is decreasing in λ. Reconcile these two results.
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e. The optimal x in your answers to b and c should not have depended on w. Why
not?

f. Return to the general scenario. We have shown that a decision maker with differ-
entiable utility should accept some stake in a favorable gamble. Using this fact, find
the conditions on π and L under which the optimal level of coverage is (i) greater than
L, (ii) equal to L, and (iii) less than L. Be clear, concise and explicit. You do not need
to reprove the fact, and your answer should not involve any differentiation or even an
expression for the decision maker’s expected utility.

g. What does this problem tell you about whether, in practice, it is typically optimal
to get full coverage for a financial loss?

Exercise 4.9. In Exercise 4.8, the monetary loss has two possible values, 0 and L. More
generally, the monetary loss can be a random variable z̃ ≥  with many possible pos-
itive values. There are two ways to extend the idea of partial coverage. One is to have
coverage that pays a fraction α of each loss. The other is to have a deductible δ, such
that if z̃ ≤ δ, the insurance pays nothing, and if z̃ > δ, the insurance pays z̃ − δ.

Suppose that the loss can be 0, $300 or $900, each occurring with equal probabil-
ity. Compare an actuarially fair policy that covers a fraction 1/2 of each loss with an
actuarially fair policy that has a deductible of $300. What is the premium charged in
each case? What are the three possible outcomes for each policy? Show that the policy
with fractional coverage is less risky than the policy with a deductible.

4.4 State-dependent utility

We can always define the set X of outcomes so that preferences are state-independent
(we make sure the outcome captures everything the decision maker cares about). How-
ever, if we wish to restrict the set of outcomes to monetary values, then we will come
across situations in which preferences over money are naturally state-dependent. In
this section, you are asked to explore decision with state-dependent utility on your
own, through several guided exercises.

Exercise 4.10. Think a moment about the following question: Should a risk-averse
mother buy an insurance policy on her son’s life, if that policy is actuarially fair?

Well, you might reason that the death of her son is a “risk”, and being risk-averse,
she should buy fair insurance against this risk.

The problem with this reasoning is that risk aversion is defined with respect to
utility over money (or some one-dimensional outcome), and so we cannot decide a
priori how a risk-averse person will treat other “risks” in her life that give her state-
dependent preferences over money.

Let’s suppose that in addition to her son’s life/death, all the mother cares about is
money. Then an outcomes can be written 〈z , s〉, where z is an amount of money, and
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s is either

s = son dies, or

s = son does not die.

Let u(z , s) be the mother’s VNM utility function.
s is also the state of the world. Preferences over outcomes as defined above are

state independent because the preference-relevant aspects of the state are included in
the outcomes. However, for this exercise, it is simpler to specify an outcome as just
money, and let preferences be state dependent. It will also simplify the exercise if we
let the outcomes be net transactions. I will now adopt these interpretations. This means
that an act is a pair 〈z , z〉, where z is the net transaction in state 1 and z is the net
transaction in state 2.

Let π be the probability that her son dies. Suppose the mother can buy a life in-
surance policy on her son, which costs π dollars per $1 of coverage. I.e., buying α
units of insurance costs απ dollars, and pays out α dollars if the son dies. The policy is
thus actuarially fair. We can allow α to be positive or negative; negative α means that
the mother receives money when her son lives and she pays the company when her
son dies (let’s hope the insurance company will not go out of its way to collect on the
policy).

In the questions below, V (α) is the mother’s expected utility as a function of the
level α of coverage.

a. If the mother buys α units of insurance, what act does she face? For π = /, draw
a picture of the acts she can face as α varies from -1,000 to 1,000. (This is part of the
budget set in the space of acts.)

b. Suppose
u(z , s) = v(z) + w(s) ,

where v is a concave concave function. In words, the marginal utility of money is
independent of the death of the son, and preferences over money exhibit risk aversion.

Write the formula for V (α). Group terms that depend on α and terms that do not.
How much insurance should the mother buy?

(Be explicit in your answer. Do not differentiate. This involves basic ideas of risk
and risk aversion and does not require solving first-order conditions.)

Illustrate graphically your answer by drawing a possible indifference curve in the
space of acts through the optimal act in the budget set.

c. Suppose
u(z , s) = v(z + w(s)) ,

where v is concave, and w(s ) > w(s ). In words, money and the son’s life are perfect
substitutes, with the imputed monetary value of the son’s life equal to w(s ) − w(s ).
Because v is concave and w(s ) > w(s ), the marginal utility of money is higher when
her son dies.

Write the formula for V (α). Group terms that depend on α and terms that do not.
How much insurance should the mother buy?

(Be explicit in your answer. Do not differentiate. This involves basic ideas of risk
and risk aversion and does not require solving first-order conditions.)
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Draw a possible indifference curve through the optimal act in the budget set for
the case where w(s ) =  and w(s ) = .

d. Suppose
u(z , s) = v(z)w(s) ,

where w(s ) > w(s ) >  and v is strictly increasing and concave. In words, money
and the son’s life are complements. The marginal utility of money is lower when her son
dies.

Write the formula for V . Assume that v is differentiable. Write down the first and
second derivatives of V . Show that V ′′(α) < , so that V is concave, and show that
V ′(α)|α= < . Does this imply that the optimal α is positive or negative? Explain.
Draw a plausible graph of V that is consistent with what you have found.

Draw a possible preferred act and a possible indifference curve through the act.

e. Consider the following three cases:

1. Marginal utility of money is higher in state s than in state s. In particular, u ′(; s ) >
u ′(; s ).

2. Marginal utility of money is the same in state 1 as in state 2. In particular, u ′(; s ) =
u ′(; s ).

3. Marginal utility of money is lower in state 1 than in state 2. In particular, u ′(; s ) <
u ′(; s ).

For each case, (i) find the sign of V ′(α)|α= , (ii) infer from this whether the optimal
amount of insurance is positive, and (iii) state whether the case applies to part b, c, or
d.

f. Which of these scenarios seems more likely? What would you do?

g. Which case do you think best fits a man who doesn’t love or even live with his wife
but relies on her for the salary she earns?

Exercise 4.11. We have considered insuring against a monetary loss (e.g., life insur-
ance when family members depend on the insured’s income, getting partners to share
risks in a business venture, disability insurance that protects against lost income, liabil-
ity insurance that protects against lawsuits, sharing the riskiness of income with family
members). Exercise 4.10, we look at insurance when the risk is simply something that
may affect your preferences over money (e.g., a child’s death, getting a date). In this
problem, we discuss insurance when the risk affects your utility from acquiring a spe-
cific good. It is the specificity of the good that makes us want to model this differently
from the previous question.

Examples:

Health insurance The value of knee surgery depends on whether you have knee
problems or not.

Auto collision insurance The value of a car repair or a second car depends on whether
your first car gets damaged in an accident.

Fire insurance The value of rebuilding your house or buying a new one depends on
whether your house burns down.
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In the simplest model, there are two goods, x and y, such that your utility from
purchasing x is affected by some risk, and y represents everything else. Assume that
the VNM utility for x and y is separable. I.e.,

u(x , y ; s) = ux (x , s) + uy (y)

Let there be two states, s and s. State s is when something bad happens that
makes consumption of good x more important. Specifically, suppose there is v(x)
such that

ux (x , s ) = v(x)

ux (x , s ) = v(x).

Assume further that both v and uy are strictly concave in x and y, respectively, and
that they are differentiable.

Finally, assume your baseline income I is state independent and that you can buy
actuarially fair insurance that reimburses you in state s.

You are to show the following:

• Consumption of y is the same in both states.
• Consumption of x is higher in state s than in state s.
• Demand for the insurance is positive.

I will not walk you through the solution, but I will give a few suggestions on how
to answer this question. Think of this as a consumer choice problem with four goods:
x in state 1, x in state 2, y in state 1, y in state 2. Write down the consumer’s utility
function over these four goods, and the consumer’s budget constraint. The prices of
these four goods that appear in the budget constraint are a function of the prices of x
and y (which are not state dependent) and of the state prices.

You can then answer the first two parts of the question using the fact that at an
optimum, the marginal rates of substitution are equal to the relative prices. That is, for
goods k and j , ∂u/∂x j

∂u/∂xk
=

p j

pk
. Define any additional notation that you use.

Exercise 4.12. Consider a life insurance policy that costs p dollars per dollar of cover-
age. The relevant set of states of the world is {die, live}. We can think of the insurance
as an asset that pays $ in state “die” and $0 in state “live”. Suppose that there is also a
riskless asset that costs $1 and pays R dollars in either state. Assume that the riskless
asset can be sold short (i.e., it is possible to take out bank loans).

a. Describe the portfolio that has 1,000 units of insurance and has zero net cost. I.e.,
say how many units of each asset are in this portfolio, and give the payoff on the port-
folio in each state.

b. Explain, by way of an example, why the VNM model does not apply to preferences
over portfolio payoffs in this model.

Exercise 4.13. Suppose Biff has asked Bonnie out for a date on Friday, and is awaiting
her reply. He figures that Bonnie will accept with probability 1/3. In the meantime, he
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negotiates with his father for some cash for the date. His father, who can never give a
straight answer, offers him the following options:

A If Bonnie accepts the date, Biff gets $40. If Bonnie does not accept the date, Biff
gets $10.

B If Bonnie accepts the date, Biff gets $15. If Bonnie does not accept the date, Biff
gets $24.

Show that B second-order stochastically dominates A. Assuming that Biff is risk averse
in his preferences over money lotteries, can we conclude that Biff would/should take
offer B? Why or why not? What is the relationship between this question and the theory
of insurance?



.



Chapter 5

Markets for state-contingent
contracts

We say there are gains from trade for a group of people if they can make trades that
leave one or all of the people better off, but no one worse off. Gains from trade are due
to heterogeneity. For example, there are gains from trade between countries because
countries have different relative quantities of the factors of production and different
preferences over final goods.

State-contingent contracting, which we call risk sharing, is a form of trade; peo-
ple are trading wealth in the various states. Section 5.1 studies the gains from state-
contingent contracting which exist because people have heterogeneous state-dependent
wealth and state-dependent preferences. In the previous chapter (e.g., Section 4.1.2),
we considered demand for assets by risk-averse traders with state-independent wealth
and preferences. Such traders will only buy risky assets if the expected excess return
is positive. But none of these traders will sell such an asset, which must therefore be
issued by traders with state-dependent wealth or preferences, who are willing to be
paying a premium in expected wealth in return for reducing their risk. Examples of
such traders are the purchasers of insurance who we modeled in Section 4.1.3.

There are many ways in which people share risks through state-contingent con-
tracts. The first way that comes to mind are insurance contracts. The risks for the
insured are shared among the many shareholders or policy holders (in the case of a mu-
tual insurance company). Competitive insurance markets are studied in Section 5.2.
Financial markets are another very important way. For example, banks sell bundles
of mortgages in asset markets in order to diversify risks: firms issue common stock
to share the risks among shareholders; farms sell commodity futures to insure against
uncertainty after harvests; and multinational firms buy forward contracts for foreign
currency in order to reduce their exposure to the risk of fluctuations in foreign ex-
change rates. We study financial markets in Chapter 6.

Social institutions, social norms, and other informal arrangements are also ex-
tremely important means for sharing risks. Governments provide disaster relief, sub-
sidized care of the mentally handicapped, and welfare payments, without which we
would bear much greater risks in our lives. Family members help those with financial
misfortune and share in financial success. Such co-insuring is also common between
families in traditional communities such as villages in developing countries. We will
not study these informal mechanisms, but their importance should not be underesti-
mated.

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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5.1 Gains from sharing risks

5.1.1 Pareto efficiency and individual rationality

Imagine an abstract setting in which there are n agents, with names i = , , . . . , n,
and a set X of social outcomes. X might be the result of political elections or interna-
tional agreements about environmental protection, or might be a decision about what
a family will have for dinner or what TV show a family will watch. Each of the agents
has preferences over X, which we represent by a utility function. Suppose that the
agents meet and collectively choose one of the outcomes from X. Assume also that
each agent can guarantee himself a utility level ui just by refusing to be part of an
agreement. Agent i ’s no agreement outcome is called his outside option, and ui is his
reservation utility. For example, in markets, ui is the utility from not trading at all.

If the agents can meet and collectively choose an outcome without any transaction
costs, then here are two properties we may expect of any agreement:

1. Each agent should at least get her reservation utility, since otherwise she should
refuse to participate in the agreement. The outcome is then said to be individually
rational.

2. If all parties know each other’s preferences and reservation utilities, then it should
be impossible to find some other outcome that at least one party prefers and no
party likes less. The outcome is then said to be Pareto efficient.

Consider two outcomes A and B. If at least one person strictly prefers B over A
and no one strictly prefers A to B, then B is said to Pareto dominate A (or to be Pareto
superior to A or to be a Pareto improvement over A). Hence, a feasible outcome A is
Pareto efficient if there is no feasible Pareto dominating outcome.

Let’s return to the specific setting of risk sharing. Each agent’s outside option is
the state-dependent allocation w̃i of wealth she gets if she does not trade or sign any
state-contingent contracts. This is called her endowment or pre-contracting allocation.
Contracting involves state-contingent transfers of wealth between the agents. If agent
i gets net transfers x̃i , then his final or post-contracting allocation is w̃i + x̃i = z̃i .

An allocation for the n agents is a list specifying the allocation for each of the agents.
Because the net transfers have to balance (∑n

i= x̃i = ), the total wealth in each state
for a feasible allocation 〈z̃ , . . . , z̃n〉 must equal the total wealth for the endowment
〈w̃ , . . . , w̃n〉. That is, ∑n

i= z̃i = ∑n
i= w̃i . An allocation is individually rational if each

agent weakly prefers her allocation to her endowment. An allocation is Pareto efficient
if there is no further feasible trade that leaves at least one agent better off and no one
worse off.

5.1.2 Depicting trade with an Edgeworth box

Consider the following story, which is an allegory for more important risk-sharing
situations:

Soze and Keyser are at summer camp together. On Friday afternoon, the
campers will receive a little money from their parents which they use to buy
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candy and such from the camp store. It is now Friday morning. Soze knows
she will get $10, because her parents always send $10. However, Keyser’s par-
ents are unpredictable. Both campers believe that Keyser will get $16 (state 1)
or $6 (state 2), with equal probability.

There is a nice graphical method for illustrating trade and gains from trade, called
an Edgeworth box. We draw the set of trades, and then simultaneously show each
parties preferences over the trades. For the set of trades to be 2-dimensional, we need
there to be two agents and two states of the world. A trade is then a transfer in state 1
and a transfer in state 2.

Here is how it works for the example of Keyser and Soze. We start by drawing
the set of allocations for Keyser, which is shown at the top of Figure 5.1. I have also
marked his endowment w̃k = 〈, 〉, and the allocation z̃k = 〈, 〉 he gets if he
signs a contract with Soze whereby Keyser gives Soze 4 dollars in state 1 and Soze gives
Keyser 3 dollar in state 2.

Then we draw the set of allocations for Soze, as shown in the middle of Figure 5.1.
I have marked her endowment w̃s = 〈, 〉 and the allocation z̃s = 〈, 〉 she gets
when she signs the same contract described above.

What we would like to do is combine these two pictures. The trick is that, when we
know Keyser’s allocation, then we know Soze’s allocation from the resource constraint.
Suppose Keyser gets wealth 14 in state 1 and 8 in state 2. Since total wealth is 26 in
state 1 and 16 in state 2, we know that Soze’s wealth is 12 in state 1 and 0 in state 2.

We can thus superimpose the two sets of allocations, as shown at the bottom of
Figure 5.1. We rotate Soze’s axes ◦ degrees, because more for Keyser means less
for Soze. Soze’s origin is the point where Keyser gets all the wealth: 〈, 〉. The
endowment points and the post-trade allocations line up. The dimensions of the box
are the total endowment:  × . The two ◦ lines do not line up because when one
party has a risk-free allocation, the other party is bearing all the risk.

Now we can depict both parties preferences over feasible allocations in the Edge-
worth Box. The top of Figure 5.2 shows the allocations weakly preferred to the en-
dowment by Keyser as a grey region in Keyser’s set of acts. The middle of Figure 5.2
shows the same set for Soze as a crosshatched region. At the bottom, we see how these
two appear in the Edgeworth Box. The intersection of these two regions is the set of
allocations that are individually rational.

If an allocation is Pareto efficient, then the set of acts strictly preferred by Soze must
not intersect the set of acts strictly preferred by Keyser. This means that the indifference
curves through the allocation are tangent, in the sense that they touch at the allocation
but do not cross each other. This is shown in Figure 5.3

In an Edgeworth box, the set of allocations that is Pareto efficient is called the con-
tract curve. This is because it typically is a curve, and because we expect people to sign
contracts that are Pareto efficient. The contract curve is shown in Figure 5.4. The por-
tion that lies between the two indifference curves through the endowment is the set of
individually rational and Pareto efficient allocations.

5.1.3 Some properties of efficient risk sharing

The following is assumed through this section:
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Figure 5.1
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The sets of allocations for Keyser and Soze, and their superimposition. w̃i is the endow-
ment of each agent, and z̃i is the allocation each agent ends up with if Keyser gives Soze
4 dollars in state 1 and Soze gives Keyser 3 dollar in state 2.
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Figure 5.2
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The indifference curve and preferred-to set the Keyser’s endowment and for Soze’s en-
dowment, and their superimposition.
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Figure 5.3
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The indifference curves through a Pareto optimal allocation must be tangent, since the
preferred to sets cannot intersect.

Figure 5.4
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The line that runs diagonally is the set of Pareto efficient allocations for the example
(which depends on the utility functions I am using). In an Edgeworth box, this set is called
the contract curve.
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Assumption . All agents have state-independent preferences and have the same be-
liefs.

Even when the endowment of each agent is random, the total endowment might
not be. For example, consider two firms competing for a defense contract. One and
only one firm will get the contract. For each firm, sales are risky. However, the total
sales of the firms are not. We say that, although there is individual risk, there is no
aggregate risk.

Proposition . Suppose the agents are risk averse and there is no aggregate risk. For any
efficient allocation, each agent’s allocation is riskless.

This is the first of three propositions we will prove in this section. Each proposition
and proof has the same logic. The conclusion of each proposition has the form: “If an
allocation is efficient, then it has Property Q.” In this first proposition, Property Q is
that no agent bears any risk. Rather than proving directly “If an allocation is efficient,
then it has Property Q,” we prove the contrapositive: “If an allocation does not have
Property Q, then it is not efficient.” You can see that the original statement and its
contrapositive are logically equivalent, which is why it is OK to prove the contrapos-
itive. In the proof, we then have to show that an allocation is not efficient. To do so,
we construct a Pareto dominating allocation, using the assumption that the original
allocation does not have Property Q.

Proof. Suppose all agents are risk averse and there is no aggregate risk. Let 〈z̃ , . . . , z̃i〉
be a feasible allocation such that the allocation for at least one person is random. ∑n

i= z̃i

is not random, since there is no aggregate uncertainty. If each agent gets E[ z̃ ] for
sure, then total wealth is the same w ∑n

i= E[ z̃i ] = E[∑n
i= z̃i ] = ∑n

i= z̃i , and hence
the allocation is also feasible. Everyone weakly prefers E[ z̃i ] to z̃i , and anyone for
whom z̃i is risky strictly prefers E[ z̃i ] to z̃i . Hence, the original allocation is not Pareto
efficient. �

In an Edgeworth box, when there is no aggregate risk the box is square and the ◦

lines for the two agents coincide. The only place the two agents’ indifference curves
can be tangent is along the ◦ line, because the slopes of the indifference curves along
this line are determined by the probabilities of the two states.

Proposition . If one or more of the agents are risk neutral, then no risk-averse agent
bears any risk in an efficient allocation.

Proof. Suppose that the allocation of one of the risk-averse agents is random. Suppose
that this agent and a risk neutral agent sign a contract such that the risk-averse agent’s
resulting allocation is non-random and equal to his certainty equivalent. Then the
expected value of his allocation has fallen by the amount of his risk premium for the
original allocation, but (by definition of the certainty equivalent) his is neither better
nor worse off. In contrast, the expected value of the risk-neutral agent’s allocation
has increased by the amount of the risk premium, and so she is better off. Thus, this
trade is a Pareto improvement, which means that the original allocation was not Pareto
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Figure 5.5
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Keyser is risk averse and Soze is risk neutral. The straight line through z̃ is Soze’s indif-
ference curve through this allocation; the curved line is Keyser’s indifference curve. The
allocation z̃ , in which Keyser bears risk, is Pareto dominated by z̃ ′, because Keyser is no
worse off but Soze is better off. Any of the allocations in the region bounded by the two
indifference curves also Pareto dominates z̃ .

efficient. �

This fact is illustrated in the Edgeworth box in Figure 5.5. Soze is the risk-neutral
agent. Recall that an indifference curve for agent Soze is just a line perpendicular to
the vector of probabilities. This vector of probabilities for Soze points in the opposite
direction as the vector of probabilities for Keyser, but they are colinear. Hence, an in-
difference curve for risk averse Keyser can only be tangent to Soze’s indifference curve
on Keyser’s ◦ line, but not elsewhere. Figure 5.5 shows an allocation z̃ in which
Keyser bears risk, and a Pareto dominating allocation z̃ ′, like the one constructed in
the proof of the proposition.

The next proposition shows local risk neutrality in action. The assumption that the
total endowment is random means that it is not the same in each state and hence there
is aggregate risk.

Proposition . If the total endowment is random and every agent is risk averse, then
every risk-averse agent with differentiable utility bears some risk in an efficient allocation.

Proof. Suppose one agent, who I will call Soze, bears no risk. Let her allocation be
zs . Because the total endowment is random, there is some other agent, which I will
call Keyser, whose allocation z̃k is random. Let CEk be the allocation that is equal to
Keyser’s certainty equivalent for z̃k . Let x̃ = z̃k − CEk , and suppose Keyser trades
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αx̃ to Soze, so that Keyser’s allocation is z̃k − αx̃k and Soze’s allocation is zs + αx̃.
Since Keyser is risk averse, CEk < E[ z̃k ], and hence E[ x̃] > . Since Soze is locally
risk neutral, there is α such that  < α <  and Soze prefers zs + αx̃ to zs . Keyser is
indifferent between z̃k and CEk . z̃k + αxs is on the line connecting z̃k and CEk , and
so Keyser weakly prefers z̃k + αxs to both z̃k and CEk . Hence, the trade αx̃ is a Pareto
improvement. �

This is illustrated at the bottom of Figure 5.2 in a Edgeworth box for the case
where Soze bears no risk and Keyser bears risk. Because there is aggregate uncertainty,
Keyser’s and Soze’s ◦ lines do not coincide. The initial allocation w̃ is on Soze’s ◦

line. Her indifference curve through w̃ is thus perpendicular to the vector of prob-
abilities. Keyser’s indifference curve through w̃ cannot be perpendicular at w̃ to the
probabilities since w̃ is not on Keyser’s ◦ line. Hence, the two indifference curves
cross, and there are further gains from trade.

Exercise 5.1. What is wrong (and what is right) with the following: “Options mar-
kets are like gambling halls—what one person wins, another loses. Therefore, they are
socially wasteful, especially given that they are costly to operate.”

Exercise 5.2. Consider the Edgeworth box in Figure 5.2 for state-contingent trading
between two traders with two states. The dimensions of the Edgeworth box tells you
that the total wealth in states 1 and 2 is 26 and 16, respectively, but otherwise you
are not told the initial allocation of wealth. The other information you have is that
both traders have state-independent preferences, are risk averse, and assign the same
probabilities to the states.

The following two questions are related, and it will help you to think about them
together. Your answer should include an explanation, and you should draw on the
graph to illustrate the answer.

1. With just this information, what can you tell me about the equilibrium allocation?
(That is, you should be able to identify a region in the box where the equilibrium
allocation must lie).

2. Suppose that I tell you that the probabilities of the two states are equal. What can
you tell me about the relative state prices?

5.2 Insurance market

The following is a very rough sketch of insurance markets.
The important characteristic of insurance markets is that they are means to share

many relatively small and similar but uncorrelated or idiosyncratic risks.
Each person who shares a small amount in a large pool of such risks actually bears

little risk. Therefore, as an approximation we can assume that insurance companies are
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risk neutral. It follows that, in the absence of administrative costs, insurance policies
in competitive insurance markets are actuarially fair. The rest of this section elaborates
on the sharing of many small risks.

5.2.1 Sharing risks in a small pool

Suppose that there are n people who face identically and independently distributed
risks x̃  , . . . , x̃n , with mean x̄ (final wealth is baseline wealth plus x̃ i ).

If n = , and these two people share the risks equally, then they end up with the
gamble

(/) x̃  + (/) x̃

This is less risky than either x̃  or x̃, as we showed in a portfolio problem where one
invests in two assets with IID returns. (Although this may not be the optimal risk-
sharing rule, because the risk preferences of the two people may differ.)

5.2.2 Sharing risks in a large pool

Returning to the general case of n people, if these risks are shared exactly, then each
person faces the risk:

X̃n = (/n)
n

∑
i=

x̃ i

We can also show that the larger is n, the less risky is X̃n . Hence, there are gains to
increasing the number of people in the pool.

Proposition . (Weak Law of Large Numbers) For all ε > ,

P
{

|X̃n − x̄ | > ε
} →  as n → ∞.

This means that for any given amount, however small, the probability that a person
share of the pooled risk deviates from the mean of the risk by this amount goes to zero
as the number of participants goes to infinity.

This also means that the expected utility from participating in the pool converges
to the utility of the expected value of the risk as n → ∞. That is, by participating in
the pool, you can effectively dissipate all risk if the pool gets large enough.

The weak law of large numbers requires independence of risks and uniformly bounded
variances, but not that risks be identically distributed.

5.2.3 A caveat about the Law of Large Numbers

The riskiness of the average wealth (/n) ∑n
i= x̃ i decreases with n, but the riskiness of

the total wealth ∑n
i= x̃ i does not.

To illustrate, if the x̃ i ’s all have variance σ , then the variance of the average is
(/n)σ , but the variance of the total wealth is nσ .

Therefore, we cannot say that insurance companies are approximately risk neu-
tral simply because they have many customers with independently distributed risks.
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Rather, they are approximately risk neutral because they have many shareholders who
together bear the independently distributed risks of their many customers.

By sharing many such risks among many people, each person sharing the risk bears
very little risk. This is why, as an approximation, we will treat insurance as if they
were risk neutral. It then follows that, in the absence of administrative costs and in-
formational asymmetries, insurance policies in competitive insurance markets will be
actuarially fair.

Exercise 5.3. You can take units in this problem to be in millions of dollars.
Suppose that an investment opportunity matures in one year and pays $1 with prob-

ability 9/10 and $0 with probability 1/10. The profits of the investment are initially
owned by a single individual, but that individual has decided to sell the opportunity
to investors, for whatever reason. For simplicity, suppose that the owner issues a sin-
gle infinitely-divisible share, whose endogenous market price is p (i.e., p dollars gets
you ownership of the entire return on the investment). Suppose that there is one other
riskless asset whose return per dollar invested is exactly $1 and whose price is fixed
exogenously at $1. The buyers of the firm will “sell” this riskless asset (borrow money)
in order to pay for the shares of stock and the seller of the firm will buy this riskless
asset (loan money) with the proceeds of the sale of the stock. (That is, there is no
consumption in the period in which the trading occurs.)

Suppose that there are N risk-averse investors with the same CARA utility function
u(z) = −e−λz . We can ignore the investors initial wealth because with CARA utility
wealth does not affect risk preferences.

a. Let V (θ , p) be an investor’s expected utility when purchasing θ units of the asset
at price p.

b. Let θ(p) be each investor’s demand for the asset, as a function of the price. Derive
θ(p) by differentiating V (θ , p) with respect to θ and solving the first-order condition.
(You do not need to check the second-order condition.) Your answer should give θ as
a function of p and λ, and should have a logarithm.

c. The equilibrium condition is that Nθ(p) = . From this condition, solve for p as a
function of N and λ.

d. Show that (for fixed N) as λ ↓ , i.e., as the investors become more risk neutral,
the price increases to /, which is the expected return on the asset.

e. Show that (for fixed λ > ) as N ↑ ∞, i.e., as there are more and more investors,
the price increases to /.

f. What does this say about whether large, publically traded corporations are less risk
averse than individually owned companies?



Chapter 6

Asset Markets

6.1 The nature of asset markets

6.1.1 Asset markets versus bilateral contracting

We have seen that preferences over market transactions can be affected by many ran-
dom factors such as random endowments of labor and wealth and random productiv-
ity. We have also seen how this creates gains from sharing risks via state-contingent
contracts.

Such state-contingent contracting occurs in a variety of ways. In many cases, such
as contracting between insurance companies and customers, between landowners and
sharecroppers, and between banks and borrowers, the contracts are negotiated directly
between two parties and the contracts are non-transferable. The disadvantage of such
bilateral contracting is that it is cumbersome if risks are to be shared among many
parties or if many parties face similar risks. For example, it would be impractical for
the government to finance debt by writing a separate contract with every potential
investor, or for each corn grower to individually negotiate corn forward contracts with
speculators.

Trading of financial assets is a means of state-contingent contracting that has lower
transaction costs when many individuals are involved. A financial asset is a transferable
contract with fixed terms whose price is determined endogenously in asset markets.
Because the terms are fixed, there is less to negotiate in the markets. Financial assets
are better than bilateral contracts when the contingencies of the contract (e.g., whether
or not a firm is bankrupt) are easily observable by the many potential investors and
when there is enough volume to justify the costs of issuing an asset. For these reasons,
home mortgages are not financed by selling bonds, but rather are financed bilaterally
between a homeowner and a bank; the bank takes care of verifying the payment or
default of the mortgage.

In this Section, we will study the trading of financial assets in asset markets. We
will see that in the absence of transaction costs or problems with verifying payments,
all state-contingent contracting could be done through trading of financial assets. It is
also true that in the absence of transaction costs, all contracting could be done through
bilateral, non-transferable contracts. The mix of financial assets and bilateral contracts
is due to the actual transaction costs and information asymmetries, but we will have
no more to say about this here.

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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6.1.2 Intertemporal versus “interstate” trading

Asset markets have two roles. The one we are mainly interested in here is risk-sharing.
The state-contingent contracts allow traders to reduce risk by shifting their wealth
between states (i.e., lose money in some states in return for gaining money in other
states). However, another purpose of asset markets is to allow traders to shift wealth
intertemporally (between one period and another). Some assets, such as a contract
that guarantees future sale of oil at a fixed price, mainly shift wealth between states
rather than between periods. Markets that are mainly tools for risk-sharing are often
called forward markets. Other assets, such as government bonds issued to finance pub-
lic spending or corporate bonds issued to build a new factory, are mainly devices for
raising capital (for the borrowers) or saving money (for the lenders). Markets that are
mainly tools for such intertemporal trading are called capital markets.

In the previous paragraph, we attempted to separate the roles of risk-sharing and
intertemporal trading. However, in practice, these two roles of asset markets are insep-
arable. On the one hand, capital contracts always involve some kind of state-contingent
payments, even if simply because the ability of the borrower or issuer to repay is state-
dependent. On the other hand, state-contingent contracts must always be entered into
before the state is learned by the parties, and typically some payment is made when the
contract is signed.

A consequence is that a model of asset trading must be intertemporal and there
must be uncertainty. Our goal is to develop a simple model, and so we assume that
there are only two periods, t =  and t = . Uncertainty is represented by S states,
s = , . . . , S. Assets are traded in period 0, then everyone learns the state, and then
the assets mature and payoffs are paid in period 1. The sequence of events is illustrated
here:

Period 0 Period 1

Trade
assets

Liquidate
portfolios

Observe
state

By assuming that there are only two periods, we cannot study the affect of gradual
revelation of information on asset prices over time and the relationship between short-
term and long-term assets. Also, by assuming that no one knows the state when asset
trading occurs and everyone knows the state when the assets mature, we are abstract-
ing from asymmetries of information (heterogeneous information of traders) that are
common in asset markets. Hence, the model does not capture insider trading, adverse
selection, or moral hazard. We will touch on some of these asymmetries later in the
course, but not in the context of a general model of asset markets.

6.1.3 Asset markets versus spot markets

In addition to asset markets, there are spot markets in which goods are traded and
exchanged immediately. You have probably heard of the spot market for oil, which
refers to oil that is traded at prices that adjust daily and are not fixed in advance by any
contract. Our use of the term “spot market” includes the spot market for oil, but it is
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much more general. Your daily purchases of food and clothing are also spot-market
transactions because the prices are not agreed to in advance and you pay for the goods
immediately.

In our model, traders use whatever wealth they have left over from asset trading
in period 0 to buy goods in the period 0 spot market, for their immediate assumption.
When period 1 arrives, the traders observe the state, liquidate their portfolios, and go
off to the spot commodity market with the payoffs on their portfolios, and whatever
other wealth they have. Even if there were no asset trading, the equilibrium prices and
trades in the spot market in period 1 would be state-dependent, because uncertainty
affects the traders’ endowments of goods (e.g., quality of labor) and preferences over
goods (e.g., demand for building construction is affected by earthquakes). However,
the asset trades have an additional state-dependent effect on spot market prices because
the portfolio payoffs, which represent transfers of wealth between traders, are state-
dependent.

Conversely, the expected spot prices in each state affect the asset trades, because the
spot prices determine what commodities can be bought with the portfolio payoffs. This
has brought us almost full circle: spot prices depend on asset prices, and asset prices
depend on anticipated spot prices. A common modeling assumption is that traders
anticipate spot prices correctly (i.e., they anticipate correctly how spot prices depend
on the state). This is a type of rational expectations assumption. With this assumption,
we have indeed come full circle, and the asset prices and state-dependent spot prices
are determined simultaneously in equilibrium. This is called an equilibrium of plans,
prices and price expectations, because, in equilibrium, traders have the same expecta-
tions about future spot prices, they observe the asset prices in the asset markets, the
asset trades are balanced, and anticipated (planned) commodity trades in each spot
market are balanced.

This should give you a flavor of the link between asset markets and spot commodity
markets, but to simplify this discussion we will not attempt to model the simultaneous
determination of asset and spot prices. Instead, we treat the commodity prices as being
exogenous. It is then possible to derive preferences over money in each state from
preferences over consumption. Suppose z is a trader’s money in the asset market (in
period 0); z is the trader’s baseline wealth in period 0 minus the cost of the portfolio.
Let zs be the trader’s wealth in state s in period 1; this is the trader’s baseline wealth in
state s plus the payoff on the trader’s portfolio in state s. Then let

Ui (z , z , . . . , zS )

be the trader’s maximum expected utility from consumption given that he spends his
wealth optimally in each spot market at the exogenous prices. U might be consistent
with expected utility maximization (but with state-dependent preferences) and might
be additive over time.

6.1.4 Nominal versus real payoffs

We now need a description of the assets. The short story is that an asset is described
by its payoff in each state. Let’s go over the long story too.

We distinguish between nominal assets (also called financial securities) and real as-
sets. Nominal assets are those whose payoffs are given in dollars. Examples are bonds,



124 Asset Markets Chapter 6

bank loans, and insurance contracts. Real assets are those whose payoffs are given in
goods. Examples are commodity futures, stocks and gold. The payoffs of some assets
are both nominal and real. For example, if I sign a contract to buy one million barrels
of oil on June 1 at $30 a barrel, then I have an asset whose payoff is 1 million barrels
of oil and − million dollars. The discussion below on both nominal and real payoffs
applies to such mixed-payoff assets.

Once we know the prices in the spot markets, we can translate real payoffs into
nominal payoffs, and vice-versa. The nominal payoff of a real asset in state s is the
value, at spot prices in state s, of the goods the asset pays out in state s. The real payoff
of a nominal asset in state s is the set of commodities that can be purchased at the spot
prices in state s with the dollars the asset pays out in state s.

Because wealth and preferences are state-dependent, we cannot evaluate the riski-
ness of portfolio payoffs without knowing the state-dependent wealth and preferences.
Insurance policies are examples of contracts whose volatile payoffs actually reduce risks
for one of the parties because of state-dependent preferences. The variability of spot
prices is another fact that makes the riskiness of asset payoffs difficult to evaluate. For
example, suppose there is a nominal asset whose payoff is one dollar in every state, and
a real asset whose payoff is a fixed bundle of commodities in each state. These might
both look like riskless assets. However, suppose the payoff of the real asset is a sack
of coffee, whose relative spot price is volatile. Then the consumption possibilities of a
trader who holds just this asset will also be highly volatile. On the other hand, if the
general price level (i.e., the rate of inflation) is highly volatile, then the consumption
possibilities of a trader who holds just the nominal asset will be highly volatile. When
prices are volatile, the least risky asset is a real asset whose payoff is a broad consump-
tion basket, such as an asset whose payoff is tied to the Consumer Price Index. Such
indexed assets are common in countries with hyperinflation.

If we were going to determine the equilibrium spot commodity prices and asset
prices simultaneously, then this distinction between real and nominal assets would
be very important in our model, because the nominal payoff of real assets and the
real payoff of nominal assets would be endogenous. However, we have opted to treat
spot market prices as fixed. We can specify the payoffs of all assets in terms of their
dollar values at the spot-market prices. Variability of the spot-market price of coffee is
reflected in variability of the nominal payoff of coffee futures. Variability of inflation
rates is reflected in the state-dependent utility of money.

6.1.5 Forward contracts versus tangible assets

Assets can also be divided into forward contracts and tangible assets. A forward con-
tract is one where one party promises to deliver money or goods to another party in the
future. A tangible asset is some storable commodity such as gold, land or machinery
to which one has title.1 With the possible exception of money, all nominal assets are

1. The term “paper asset” has nothing to do with this distinction. Anything in which ownership is recorded
on paper, be it a commodity futures contract or ownership in a firm, looks to journalist like a paper asset.
Thus, they would call shares of stock a paper asset, but we will call it a tangible asset. An asset does not have
to be in your living room or back yard to be tangible.
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forward contracts.2

The purchases and sales of forward contracts must always balance, and so their net
supply is zero. Furthermore, until the asset is traded for the first time, each trader’s
initial holding is zero. For example, a life insurance contract is like an asset that pays
$1 if you die and $0 otherwise. When you meet with the insurance agent, neither
you nor your insurance company hold any of this asset. If you decide to purchase
$100,000 of coverage, your holding is 100,000 and your insurance company’s holding
is −, . The total of everyone’s holding is still zero. Suppose that you pay the
insurance company by borrowing money from the bank, at a zero rate of interest. Bank
loans are assets that pay $1 in states in which you do not default, and $0 in the other
states. You have sold 100,000 units of the asset and the bank has bought 100,000 units.
Again, the total supply is zero before and after trade.

A tangible asset, on the other hand, is more like bananas at a spot market. The
total supply is positive, and it is impossible to hold a negative amount. However, for
each tangible asset there can be a parallel forward contract that promises delivery of
the asset in the future, and hence has the exact same payoff as the tangible asset. For
example, there are stocks (tangible assets) and stock options (forward contracts). There
is no difference between buying gold at t =  and holding it until t = , and buying
a forward contract that promises delivery of gold at t = . There is a small difference
between buying stock and buying a forward contract for stock; buying stock gives you
voting rights and the control that accompanies ownership. However, this distinction is
not part of our model, and it is fairly accurate to unify the market for a tangible asset
with the market for its parallel forward contract. This means that short sales (negative
holdings) of tangible assets (and hence all assets) are allowed, and the only difference
between tangible assets and forward contracts is that the net supply of tangible assets
is positive.

6.2 Market equilibrium

6.2.1 The general model

Tangible assets can be created through production, while financial assets are created in
the marketplace. For example, Motorola decides whether to float a bond, investment
banks decide whether to issue derivative securities, and the Chicago Mercantile Board
decides whether to have trading in corn futures. Financial theory is roughly divided
into corporate finance, which studies in part how corporations choose which financial
assets to issue, and asset pricing, which studies asset markets assuming that the avail-
able assets are given exogenously. It is quite complex to combine these two topics. We
take the asset pricing approach, and study the trading of exogenously given assets.

Let there be J assets. (Generally, I will name the asset , , . . . , J , but when there

2. Are dollars a tangible nominal asset, or are they a forward contract in which the government agrees
to redeem the dollars for real commodities? This may seem like an easy question, but books are written
about this and we leave you to think about this question on your own. For our model, the distinction is
unimportant, as long as we remember that money is one of the available assets.
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are two or three assets I will name them a , b , c.) As described above, each asset j
is characterized by its nominal payoff Ỹ j (s) in each state s = , . . . , S. Ỹ j (s) is the
amount of money you get in state s per unit of the asset you hold; if you hold a negative
amount of the asset (e.g., you issued the asset or sold it short) then you pay this amount.
These payoffs are typically not neatly listed on the asset titles, but instead are implicit.
For example, a bond issued by the city of Trenton might say that it pays $1,000 upon
maturity. However, this is only the payoff in those states in which the city does not
default. It might pay $800 if federal funding is eliminated and $600 if the New Jersey
capital is moved to Rocky Hill. An ounce of gold and a share of ownership of a firm
do not have any payoffs listed on them, but their payoffs are determined by the state-
dependent spot market prices and the firm’s state-dependent productivity.

A trader’s portfolio is a list θ = 〈θ , . . . , θ J〉 of the amount of each asset the trader
holds. Traders come to the market with an initial portfolio, which is the result of past
asset trading that does not appear in our model. For simplicity, let’s assume everyone
initially holds no assets. This is like assuming that there are no tangible assets and
that all forward contracts are being issued for the first time. At the expense of extra
notation, we could remove this assumption and our conclusions would not change.

Let q j be the price of asset j . Because each trader has no initial endowment of
assets, his surplus in the asset market when he acquires portfolio 〈θ , . . . , θ J〉 is minus
the cost qθ + · · · + q J θ J of his portfolio. This cost can be either positive or negative.
The payoff on this portfolio in state s is θỸ (s) + · · · + θ J Ỹ J (s). This payoff can also
be positive or negative.

Assume that the agents trade competitively, which means that they choose their
portfolios taking asset prices as given.

Consider the portfolio selection problem of a typical trader. This trader cares only
about the dollar value z of consumption in period 0 and the dollar value zs of con-
sumption in each state s in period 1, according to a utility function

U (z , z , . . . , zS ).

He starts with a baseline wealth w , w , . . . , wS (this is his initial allocation or endow-
ment), which he can modify by trading assets. If he purchases a portfolio 〈θ , . . . , θ J〉,
then he ends up with

z = w − (qθ + . . . + q J θ J )

available for consumption in period 0 after trading, and he ends up with

zs = ws + θỸ (s) + . . . + θ J Ỹ J (s)

in state s in period 1, after liquidating his portfolio. Therefore, he selects a portfolio
that solves the following maximization problem:

max
θ ,...,θ J

U (z , z , . . . , zS )

subject to: z = w − (qθ + . . . + q J θ J )
zs = ws + θỸ (s) + . . . + θ J Ỹ J (s) ∀s = , . . . , S.

(6.1)

Our definition of an equilibrium will look like the definition of an equilibrium
in competitive commodity markets. The two ingredients are individual optimality
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and market clearing. That is, the asset market is in equilibrium when the competi-
tive (price-taking) asset demands at the prevailing asset prices balance. In commodity
markets, “balance” means that the total consumption equals total resources. In these
asset markets, where the net initial supply of each asset is zero, “balance” means that
the total demand of each asset is zero: for each unit bought, there must be a unit sold.

Definition . Asset prices 〈q , . . . , q J〉 and a portfolio 〈θ i
 , . . . , θ i

J〉 for each trader
i = , . . . , n are a financial equilibrium if

Individual optimality 〈θ i
 , . . . , θ i

J〉 solves equation (6.1) for i = , . . . , n.
Market clearing ∑n

i= θ i
j =  for j = , . . . , J .

6.2.2 A two-dimensional model

Before studying this general model, let’s consider a simple version that is designed so
that we can draw some pictures. I will call it the  ×  ×  ×  model because it has:

• Two periods: 0 and 1.
• Two states: 1 and 2.
• Two assets: a and b.
• Two traders: k (Keyser) and s (Soze).

Unlike in the general model, there is no consumption or baseline wealth in period
0 when asset trading occurs. This can be unintuitive at times, but it is necessary so that
an allocation is just a point on the plane, giving money in state 1 and money in state
2. One story that fits this  ×  ×  ×  model is that of the campers Keyser and Soze
in the beginning of Section 5.1.2. It is also unintuitive that there are competitive asset
markets when there are just two traders. It may help to imagine that there are many
identical Keyser brothers and Soze sisters at the camp.

The period 0 budget constraint, which is

z = w − (qa θa + qb θb )

when there is consumption in period 0, becomes instead

 = qa θa + qb θb .

That is, each trader must finance any purchases of one of the assets by selling the other
asset. Then the portfolio selection problem is

max
θa ,θb

U (z , z )

subject to:  = qa θa + qb θb

z = w + θaỸa () + θbỸb ()
z = w + θaỸa () + θbỸb ().

(PSP)

This maximization problem has an interesting property. The trader cares about his
real allocation z , z, but he chooses a portfolio θa , θb . The real allocation is linked to
the portfolio through the constraints. In solving this problem, the trader can (i) look



128 Asset Markets Chapter 6

at how the constraints determine his set of feasible allocations, then (ii) pick the best
of these allocations, and then (iii) figure out what portfolio gets him this allocation.

To determine the set of feasible allocations, we need to combine the budget con-
straints by solving out θa and θb . Let’s start by solving the asset market constraint for
θa as a function of θb :

θa = −qb θb /qa .

Now substitute this into the two spot-market constraints:

zs = ws −
qb θb

qa
Ỹa (s) + θbỸb (s)

= ws + qb θb

(
Ỹb (s)

qb
− Ỹa (s)

qa

)
.

R̃b (s) = Ỹb (s)/qb is the return (payoff per dollar invested in the asset) of asset b in
state s , and

x̃(s) = R̃b (s) − R̃a (s) =
Ỹb (s)

qb
− Ỹa (s)

qa

is called the excess return of asset b over asset a. Then we can write the two spot-market
budget constraints as follows:

z = w + (qb θb ) x̃() (6.2)

z = w + (qb θb ) x̃(). (6.3)

Digression on arbitrage The excess return x̃(s) is the payoff on my portfolio if I buy
$1 of asset b and sell $1 of asset a. If x̃() and x̃() are both positive, it is possible to
have unlimited wealth in both states by increasing the dollars qb θb invested in asset
b and sold of asset a. This is an example of arbitrage. For example, suppose the asset
prices and payoffs are

Asset a Asset b
Price 4 2

Payoff state 1 3 2
Payoff state 2 1 3

Then the returns are

Returns
Asset a Asset b Excess

State 1 3/4 1 1/4
State 2 1/4 3/2 5/4

By selling one unit of asset a and buying two units of asset b, I get a payoff of 1 in state
1 and 5 in state 2. I can get unlimited consumption in both states by buying arbitrarily
large quantities of this portfolio.

If x̃() and x̃() are both negative, unlimited wealth is attained by increasing the
dollars qb θb sold of asset b and purchased of asset a. Arbitrage is also possible if the
excess return is zero in one state and positive or negative in the other. Looking ahead
to equilibrium, we can see that there can be no equilibrium when arbitrage is possible
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because traders will demand unlimited amounts of arbitrage portfolios. Therefore, we
assume that arbitrage is not possible, which means that either the excess return in both
states is zero or the excess return is positive in one state and negative in the other.

Digression on incomplete markets When the excess return is zero in both states, it is
impossible to make state-contingent trades by trading assets. Any portfolio with zero
cost also has a zero payoff in both states. This can happen if and only if the payoffs of
asset b are proportional to the payoffs of asset a. For example, suppose the payoffs are
as follows:

Payoffs
Asset a Asset b

State 1 1 2
State 2 3 6

The payoffs of asset b are twice the payoffs of asset a. The excess returns are:

x̃() =


qb
− 

qa

x̃() =


qb
− 

qa
=  x̃().

Thus, if qb �= qa , the excess returns are both positive or negative, and arbitrage is
possible. If qb = qa , then the excess returns are both zero. Buying one unit of asset b
is equivalent to buying one unit of asset a. It is as if there were only one asset, which is
not enough for state-contingent trade. This is an example of incomplete markets, which
is discussed in Section 6.3.3. For now, we simply assume that the payoffs of asset b are
not proportional to the payoffs of asset a, which means that we have complete asset
markets.

In summary, with no-arbitrage asset prices and complete markets, x̃() and x̃()
are unequal to zero and have opposite signs. We can then combine the two constraints
in equation (6.2) and (6.3) by solving the state-1 constraint for qb θb ,

qb θb =
z − w

x̃()
,

and substituting the answer into the state-2 constraint:

z = w +
z − w

x̃()
x̃().

Rearranging:

− 
x̃()

z +


x̃()
z = − 

x̃()
w +


x̃()

w . (6.4)

If x̃() >  and x̃() < , then let

p =


x̃()
and p = − 

x̃()
.

If instead x̃() <  and x̃() > , let

p = − 
x̃()

and p =


x̃()
.
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Either way, p and p are positive and the budget constraint in equation (6.4) is

p z + p z = pw + pw .

As in the portfolio selection and insurance demand problems of Section 4.2.5, we
have reformulated the decision problem so that it looks like a standard consumer de-
mand problem, for a household that consumes two goods (e.g., corn and leisure/labor)
that have prices p and p, and whose income is the value of its initial endowment of
these goods. Rather than choosing consumption of corn and leisure/labor; or con-
sumption of oranges and apples, the trader chooses money in state 1 and consumption
in state 2, when the “prices” of consumption in states 1 and 2 are p and p, respectively.
p and p are called the state prices.

In summary, the reduced form of the traders portfolio selection problem is the
following consumption choice problem:

max
z ,z

u(z , z )

subject to: p z + p z = pw + pw .

(CCP)

I call (CCP) a reduced form of (PSP) because the solutions to both problems give the
same allocations and portfolios.

Proposition . Let qa and qb be asset prices, and let p and p be the corresponding state
prices. Let 〈θa , θb〉 be a portfolio, and let 〈z , z〉 be the corresponding allocation:

z = w + θaỸa () + θbỸb ()

z = w + θaỸa () + θbỸb ().

Then 〈θa , θb〉 solves (PSP) given 〈qa , qb〉 if and only if 〈z , z〉 solves (CCP) given 〈p , p〉.

Because there is no consumption in period 0 of this artificial model, assets are
bartered rather than bought or sold using dollars. A consequence is that only relative
asset prices qb /qa , which determine the exchange ratio, matter. Similarly, in (CCP),
only relative state prices

p

p
=

x̃()
x̃()

matter.
Suppose that asset payoffs are as follows:

Payoffs
Asset a Asset b

State 1 1 1
State 2 1 3

If qa =  and qb = /, then the returns are

Returns
Asset a Asset b Excess

State 1 1 2/5 -3/5
State 2 1 6/5 1/5
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Therefore, the relative state prices are

p

p
= −−/

/
= .

Having translated the asset prices into state prices, suppose that a trader’s baseline
wealth is w = w =  and that her solution to (CCP) when p/p =  is z = 
and z = . Now let’s translate this consumption choice into a portfolio selection. Her
portfolio payoff is zs − ws in state s, and hence is 6 in state 1 and − in state 2. The
portfolio 〈θa , θb〉 that yields this payoff is the solution to

 = θa + θb

− = θa + θb .

The answer is θa =  and θb = −.

6.2.3 Real and financial equilibrium in the two-dimensional model

Definition . A financial equilibrium is a pair 〈qa , qb〉 of asset prices and portfolios
〈θk

a , θk
b〉 and 〈θs

a , θs
b〉 for Keyser and Soze such that

Individual optimality 〈θ i
a , θ i

b〉 solves (PSP) for trader i , given 〈qa , qb〉.
Market clearing θk

a + θs
a =  and θk

b + θs
b = .

The equivalence between (PSP) and (CCP) suggest a possible equivalence between
equilibrium in the asset market and an equilibrium in a hypothetical market in which
traders directly exchange consumption in state 1 for consumption in state 2. Here is
the definition of equilibrium for this hypothetical market:

Definition . A real equilibrium is a pair 〈p , p〉 of state prices and allocations 〈zk
 , zk

〉
and 〈zs

 , zs
〉 for Keyser and Soze such that

Individual optimality 〈z i
 , z i

〉 solves (CCP) for trader i , given 〈p , p〉.
Market clearing zk

 + zs
 = wk

 + ws
 and zk

 + zs
 = wk

 + ws


If you find the idea of direct trading of consumption in the two states too hypo-
thetical, you can also interpret a real equilibrium as a financial equilibrium when the
asset payoffs are canonical:

Payoffs
Asset a Asset b

State 1 1 0
State 2 0 1

Asset a is the same as consumption in state 1 and asset b is the same as consumption
in state 2.

For any prices qa and qb , the excess returns are

x̃() = −/qa x̃() = /qb .



132 Asset Markets Chapter 6

Therefore, relative state prices are equal to the relative asset prices.

p

p
= − x̃()

x̃()
=

qb

qa
.

This makes sense, since buying a unit of asset a is equivalent to buying a unit of con-
sumption in state 1. When the assets have these payoffs, the market is as similar to a
market for apples and bananas as is possible. You cannot actually have units of con-
sumption in states 1 and 2 sitting on tables for people to buy, but with these assets you
can have a table with coupons for consumption in state 1 and a table with coupons for
consumption in state 2.

Proposition . Let 〈qa , qb〉 be asset prices with corresponding state prices 〈p , p〉. Let
〈θk

a , θk
b〉 and 〈θs

a , θs
b〉 be portfolios that yield allocations 〈zk

 , zk
〉 and 〈zs

 , zs
〉, respectively.

Then 〈qa , qb〉 and 〈θk
a , θk

b〉 and 〈θs
a , θs

b〉 are a financial equilibrium if and only if 〈p , p〉
and 〈zk

 , zk
〉 and 〈zs

 , zs
〉 are a real equilibrium.

Proof. We claimed in the previous section that 〈θ i
a , θ i

b〉 solves (PSP) given 〈qa , qb〉 if
and only if 〈zs

 , zs
〉 solves (CCP) given 〈p , p〉. We need to also show that portfolios

are balanced if and only if the allocations are balanced. That is

θk
a + θs

a = 
θk

b + θs
b = 

⇐⇒ zk
 + zs

 = wk
 + ws


zk

 + zs
 = wk

 + ws
 .

For each agent’s budget constraint,

z i
s − w i

s = θ i
aỸa (s) + θ i

bỸb (s).

Therefore:

(zk
 − wk

 ) + (zs
 − ws

 ) = (θk
a + θs

a )Ỹa () + (θk
b + θs

b )Ỹb ()

(zk
 − wk

 ) + (zs
 − ws

 ) = (θk
a + θs

a )Ỹa () + (θk
b + θs

b )Ỹb ().

You can see that the left-hand side of each equation is zero (real markets clear) if θk
a +

θs
a =  and θk

b + θs
b =  (financial markets clear). I will not prove the converse, as it

requires some facts from linear algebra. �

This means that, to find a financial equilibrium, we can look for a real equilibrium
and then “unravel” the state prices and allocations to find the asset prices and portfo-
lios. There are two advantages to doing this:

• Finding a real equilibrium is easier, because we already know preferences over al-
location and we can use the standard tools of equilibrium analysis, such as Edge-
worth’s boxes.

• The real equilibrium does not depend on the asset payoffs. Hence, if we want to
compare the financial equilibrium for two different asset structures, we can first
find the real equilibrium and then translate it into the financial equilibrium for
each of the asset structures.
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Figure 6.1
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An Edgeworth box, showing Keyser’s endowment w̃k = 〈, 〉 and Soze’s endowment
w̃s = 〈, 〉, and indifference curves through the endowments. (Keyser’s indifference
curve is dashed and Soze’s is dotted.)

I will do one example. The first step is to find the real equilibrium, which I will
do using Edgeworth boxes. This is just a pure exchange equilibrium, which you have
studied in a microeconomics course, but I will not rely upon perfect recall. If you need
additional refreshing on the topic, consult any microeconomics text.

Consider first the Edgeworth box economy in Figure 6.3, which is the same as the
one in Figure 5.2. Keyser’s endowment is 〈, 〉 and Soze’s endowment is 〈, 〉. The
figure shows the endowment and the two indifference curves through the endowment.
The traders believe the states are equally probable, and they have state-independent,
risk averse preferences.

First, we will use the Edgeworth box to see that the relative state prices p/p = 
are not equilibrium prices. The beauty of the Edgeworth box is that we can simultane-
ously show the budget lines and consumption decisions for both traders, but let’s start
with each individual trader. The top of Figure 6.2 shows Keyser’s endowment and in-
difference curve through the endowment, plus his budget line and indifference curve
through his preferred allocation on the budget line. The budget line passes through his
endowment and is perpendicular to the vector 〈, 〉 of state prices. Since the prices
are the same in both states, just like the probabilities, the vector of prices points in the
same direction as the vector of probabilities, and all allocations on the budget line have
the same expected value. (The budget line is the fair-odds line.) Since Keyser is risk
averse, he chooses the risk-free allocation, where his budget line crosses his ◦ line.

The bottom of Figure 6.2 shows Soze’s endowment, her indifference curve through
her endowment, and her budget line. Like Keyser, Soze is risk averse and prefers the
riskfree allocation; for Soze, this is her endowment and so she chooses not to trade at
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Figure 6.2
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Individual consumption decisions when state prices are equal to the probabilities, and
hence all points on the budget line have the same expected value. The top graph shows
Keyser’s choice and the bottom figure shows Soze’s choice. Both decision makers have
state-independent and risk-neutral preferences, and hence choose the risk-free alloca-
tion.
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Figure 6.3
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An Edgeworth box showing demand for consumption in each state by both traders when
state prices are equal to the probabilities (p/p = π/π = ). The dashed lines are
Keyser’s indifference curves and the dotted line is Soze’s indifference curve. Both traders
have state-independent, risk-averse preferences. Hence, both traders demand a risk-free
allocation. Since the aggregate endowment is random, the demands do not equal the
allocations, and so these prices are not equilibrium prices.

all.
When we superimpose these two pictures to make an Edgeworth box, we obtain

Figure 6.3. Observe that the budget lines for the two traders coincide. This is a useful
feature of Edgeworth boxes. For market clearing, the total demand must equal the total
endowment. The Edgeworth box is set up so that the total endowment equals the di-
mensions of the box. This implies, by example, that there is market clearing if and only
if the two traders’ demands coincide in the box. Then, for example, the demand for
good 1 by Soze—which is the distance from Keyser’s vertical axis to Keyser’s demand—
plus the demand for good 1 by Soze—which is the distance from Soze’s vertical axis to
Soze’s demand—equals the total endowment of good 1—which is the distance between
the two vertical axes. For the state prices shown in Figure 6.3, the demands do not co-
incide and the relative state prices equal to the relative probabilities are not equilibrium
prices.

We can guess where the equilibrium allocation lies by looking at the Edgeworth box
in Figure 6.1. Since trade is voluntary, the equilibrium allocations must be individu-
ally rational, which means they must lie in the region bounded by the two indifference
curves through the endowment. Observe that the budget line passes through this re-
gion only if p/p > π/π. The intuition is that, in equilibrium, Keyser is going to
share risk with Soze. For Soze to take on this risk, she must get a positive expected
return. The equilibrium and relative state prices are p/p = , and the equilibrium
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allocations are z̃k = 〈, .〉 and z̃s = 〈, .〉. The top of Figure 6.4 shows that the
equilibrium allocations are individually rational. The bottom of the figure shows the
indifference curves through the equilibrium allocation.

Note that I have not yet told you what assets are traded in the asset market; we
do not need to know this in order to determine the real equilibrium (as long as there
are two assets whose payoffs are not proportional to each other). Nevertheless, having
found the real equilibrium allocations, we can determine what the portfolio payoffs
must be in the financial equilibrium, because each trader’s portfolio payoff must equal
his or her net trade in each state:

Trader State Allocation z i
s Endowment w i

s Portfolio payoff z i
s = w i

s

Keyser 1 11 16 −
2 8.5 6 2.5

Soze 1 15 10 5
2 7.5 10 −.

Note that Soze’s portfolio payoffs are the opposite (sign) of Keyser’s payoffs, which must
be true for the net trades to balance.

Let’s find the financial equilibrium when the asset has the following payoffs:

Payoffs
Asset a Asset b

State 1 1 1
State 2 1 3

To solve for the relative asset prices, we can use the equation

p

p
= − x̃()

x̃()
.

For the equilibrium relative state prices p/p =  and the asset payoffs, we get the
following equation that we solve for qb /qa :

 = −


qb
− 

qa


qb

− 
qa

 − qb /qa = qb /qa − 
qb

qa
=




.

Here is an easier method for calculating relative prices of the assets. If state prices are
p and p, and an asset pays off Ỹ () and Ỹ (), then the state-price value of this asset’s
payoff is pỸ () + pỸ (). Therefore, relative asset prices should be

qb

qa
=

pỸb () + pỸb ()
pỸa () + pỸa ()

.

For this example, we have

qb

qa
=

( × ) + ( × )
( × ) + ( × )

=



.
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Figure 6.4
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The equilibrium in the Edgeworth box. The state prices are p/p = . The equilib-
rium allocation is z̃k = 〈, .〉 and z̃ s = 〈, .〉. The dashed and dotted curves are
Keyser’s and Soze’s indifference curves, respectively. The top graph shows the indiffer-
ence curves through the endowment; the equilibrium allocation is individually rational.
The bottom graph shows the indifference curves through the equilibrium allocation; the
equilibrium-allocation is Pareto efficient.
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Amazingly enough, it worked.
Now let’s solve for the equilibrium portfolios. Note that this calculation is inde-

pendent from the calculation of asset prices. That is, to calculate the equilibrium asset
prices, we only need to know the equilibrium state prices. To calculate the equilibrium
portfolio, we only need to know the equilibrium allocations.

We need to find portfolios that generate the equilibrium portfolio payoffs. That is,
for Keyser we find θk

a and θk
b such that

zk
 − wk

 = θk
a Ỹa () + θk

b Ỹb ()

zk
 − wk

 = θk
a Ỹa () + θk

b Ỹb ().

For this example, these equations are

− = θk
a + θk

b

. = θk
a + θk

b .

The solution is θk
a = −/ and θk

b = /. We could do similar calculations for
Soze, but why bother: Since these are equilibrium portfolios, θs

a = −θk
a = / and

θs
b = −θk

b = −/.
Here are the same calculations for canonical payoffs:

Payoffs
Asset a Asset b

State 1 1 0
State 2 0 1

As you might suspect, the calculations in this case are trivial. The asset prices are
equal to the corresponding state prices: qb /qa = p/p = . The portfolios match the
portfolio payoffs

〈θk
a , θk

b〉 = 〈zk
 − wk

 , zk
 − wk

〉 = 〈−, .〉
〈θs

a , θs
b〉 = 〈zs

 − ws
 , zs

 − ws
〉 = 〈, −.〉.

When one of the traders is risk neutral, it is easy to determine equilibrium asset prices
and state prices. The state prices must equal the probabilities, and the asset prices must
be such that the expected return of each asset is the same. The proof of this is left as an
exercise.

Exercise 6.1. The attached graphs show an Edgeworth box with agents Keyser and
Soze, for an asset market with two states s and s and no consumption in period 0.
The endowment and the indifference curves through the endowment are drawn. Both
traders are have state-independent preferences and are risk averse.

a. What is the endowment of each trader? Which trader(s) have a risky endowment?

b. On the first graph, label which indifference curve belongs to Soze and which be-
longs to Keyser.

c. On the first graph, draw the budget line when state prices are equal. Mark the opti-
mal allocation from the budget line for each of the traders, and illustrate the optimality
by drawing the indifference curve of each trader through his/her optimal allocation.
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d. Referring to the graph to support your argument, explain why, for the given en-
dowments and for any risk-averse preferences, equal state prices cannot be equilibrium
state prices, and that equilibrium state prices must satisfy p/p > .

e. The equilibrium state prices for the preferences I am using are approximately p/p =
, and the equilibrium allocations are approximately z̃k = 〈, .〉 and z̃s = 〈, .〉.
Draw the budget line for these prices, mark the equilibrium allocations, and draw plau-
sible indifference curves showing that these allocations are optimal for each trader.
What is each trader’s portfolio return?

f. Suppose there are two assets, a and b. Asset a’s payoff is 1 in each state, and asset b’s
payoff is  is state s and 3 in state s. Given the equilibrium state prices and allocations
stated above, derive the equilibrium asset prices and portfolios.

g. Suppose that instead, asset a’s payoff is 1 in state s and 0 in state s, and asset b’s
payoff is 0 in state s and 1 in state s. Derive the equilibrium asset prices and portfolios.

6.3 Complete versus incomplete markets

6.3.1 Arbitrage and linearly dependent assets

We return to the more general model of Section 6.2. Just by looking at the budget
constraint, we can make some important observations about equilibrium asset prices.
We assume that traders like more money over less in every period and state. Then, in
equilibrium, there cannot be a portfolio that gives a non-negative surplus or payoff in
every period and state, and a positive surplus or payoff in some period or state. Such a
portfolio is called an arbitrage opportunity. If such a portfolio existed, each trader could
do better by buying more of the portfolio. If everyone is buying this arbitrage portfolio,
asset markets cannot clear; furthermore, there is not even a solution to the portfolio
selection problem because it is always possible to get more wealth in at least one period
or state, without giving up money in any other period or state. Asset prices for which
there are no arbitrage opportunities are called no-arbitrage prices. Only no-arbitrage
prices can be equilibrium prices.3

For example, suppose that there are two states and three assets, with the following
prices and payoffs:

Asset a Asset b Asset c
Price 200 150 150

Payoff state 1 100 225 140
Payoff state 2 300 75 140

3. At least this is the case in our idealized, fractionless, competitive market. In real markets, there may be
small, transitory arbitrage opportunities that are quickly dissipated by traders who, by trying to profit from
these opportunities, push prices towards no-arbitrage prices.
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Consider the portfolio 〈/, /, −〉. The cost of this portfolio is

(/) + (/) + (−) = .

The payoff on this portfolio is strictly positive in each state:

z = (/) + (/) + (−) = 

z = (/) + (/) + (−) = .

Hence, it is an arbitrage portfolio.
In this example, the asset payoffs are linearly dependent. This means that the payoff

of one of the assets is equal to the payoff of a portfolio containing only the other assets.
That is, there are θa and θb such that

Ỹc () = θaỸa () + θbỸb ()

Ỹc () = θaỸa () + θbỸb ().

These equalities hold when θa = / and θb = /. The no-arbitrage condition
implies that the prices of portfolios that have the same payoffs must be the same. In
this example, this means that

qc = qa θa + qb θb = (/)qa + (/)qb .

Therefore, the no-arbitrage condition imposes restrictions on the prices of linearly de-
pendent assets. The use of these restrictions is called arbitrage pricing.

Note that if qc = qa θa + qb θb , then eliminating asset 3 does not limit the possible
portfolio payoffs. Instead of buying or selling a unit of asset 3, the traders can buy
or sell the portfolio 〈θa , θb〉 of the remaining two assets. Therefore, whenever some
assets are linearly dependent, there are redundant assets. (Note that any one of the three
assets can be written as a portfolio of the other two, and hence any one of them can be
eliminated. There are redundancies, but we cannot single out one of the assets as the
redundant asset.)

Here is an example of what is called binomial option pricing. Suppose that assets
include a riskless bond (asset a), a risky stock (asset b), and a call option on the stock
with exercise price K (asset c). The option gives the holder the right to pay K for the
stock; it is exercised only when the payoff (dividend plus value) of the stock exceeds
K , in which case the payoff of the option is Ỹb (s)− K . Hence, for any state s the payoff
is

Ỹc (s) = max{Ỹb (s) − K , }.

Suppose there are two states, 1 and 2, in which the stock’s payoffs are 1 and 3,
respectively, and that the call option has an exercise price of 5/2. Then the payoffs Ỹc

of the call option are Ỹc () =  and Ỹc () = /. Assume that the bond pays $1 in
both states. Then the matrix fo payoffs is

Payoffs
Bond Stock Option

State 1 1 1 0
State 2 1 3 1/2
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The option has the same payoff as the portfolio with θ = −/ and θ = /. Therefore,
the prices of the bond, stock and option satisfy

qc = qb / − qa /.

Exercise 6.2. In the general case of binomial option pricing:

1. The price of the bond and the stock are q and q, respectively;
2. The payoff of the bond is Rq in both states, where R is the riskless return;
3. The payoff of the stock is RLqb in state 1 and RH qb in state 2, where RL < RH , RL

is the return in the “bad” state, and RH is the return in the good state.
4. The price of the call option on the stock is q and the strike price is K , where

RLq < K < RH q.

Derive the no-arbitrage price of the option as a function of q, q, R, RH , RL and
K .

6.3.2 No-arbitrage asset prices and state prices

Given asset prices 〈q , . . . , q J〉, a vector 〈p , . . . , pS〉 of positive numbers is a state-price
vector if, for each asset j ,

q j = pỸ j () + pỸ j () + · · · + pSỸ j (S). (6.5)

Imagine that you are in a fruit market with S varieties of fruit, in which the price
of fruit s is ps . If someone is selling coupons that entitle you to Ỹ j () units of fruit
1, Ỹ j () units of fruit 2, and so on, then the value if the coupon is q j , as defined in
equation (6.5). Thus, we can think of component ps of a state-price vector as the price
of consumption in state 2.

We already saw the use of state prices for characterizing the equilibrium of the
 ×  ×  ×  model; we will see similar application later, and will use state prices to
derive the CAPM asset-pricing model. Another use of state prices is to price linearly
dependent assets. It is easy to show that if 〈p , . . . , ps〉 is a state-price vector for a set of
assets, and if we add additional, linearly dependent assets, then its no-arbitrage price
must be also be given by equation (6.5).

The purpose of this section is to show a neat trick for finding the set of no-arbitrage
prices, and then to show that asset prices satisfy no arbitrage if and only if there is a
state-price vector.

Let’s start with the punchline. Suppose I ask you to draw on the plane the set of
asset prices 〈qa , qb〉 that do not permit arbitrage when the payoffs are as follows:

Payoffs
Asset a Asset b

State 1 2 4
State 2 3 1

Take a moment to try to work out the answer.
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Figure 6.5

〈Ỹa (),Ỹb ()〉

〈Ỹa (),Ỹb ()〉

No-Arbitrage Prices

〈qa ,qb 〉

      











Asset a

Asset b

The set of no-arbitrage prices.

Here is an easy way to answer this question. Take the two state payoff vectors:

Ỹ () = 〈Ỹa (), Ỹb ()〉 = 〈, 〉
Ỹ () = 〈Ỹa (), Ỹb ()〉 = 〈, 〉.

Mark them on the plane, and draw the two rays form the origin through the points.
Now shade in the region between the rays, as shown in Figure 6.5. This region (not
including the rays) is called the open convex cone generated by 〈Ỹa (), Ỹb ()〉 and
〈Ỹa (), Ỹb ()〉. It is the set of no-arbitrage prices.

A point is in this convex cone if and only if it is a linear combination of the points
〈Ỹa (), Ỹb ()〉 and 〈Ỹa (), Ỹb ()〉, with positive weights. That is, if and only if there
are p >  and p >  such that

〈qa , qb〉 = p〈Ỹa (), Ỹb ()〉 + p〈Ỹa (), Ỹb ()〉. (6.6)

These positive weights are state prices. Equation (6.6) is really two equations, one for
each of the components of the vectors:

qa = pỸa () + pỸa () (6.7)

qb = pỸb () + pỸb (). (6.8)

Observe that equations (6.7) and (6.8) are examples of equation (6.5).
In summary:

Proposition . Asset prices 〈qa , qb〉 satisfy no-arbitrage if and only if there is a state-
price vector.
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Figure 6.6

〈Ỹa (), Ỹb ()〉

{θ | θ · Ỹ () = }

ΘA
 = {θ | θ · Ỹ () ≥ }

      −−−−−−−











−

−

−

Asset a

Asset b

The set ΘA
 of portfolios with non-negative payoff in state 1.

Now let’s take a step back and illustrate graphically that the set of no-arbitrage
prices is the open, convex cone generated by the state-payoff vectors. First, we draw
the set ΘA of “potential” arbitrage portfolios, which is the set of portfolios with non-
negative payoff in both states. These are the portfolios that could be arbitrage portfolios
for the wrong prices. This set is the intersection of the sets ΘA

 and ΘA
 of portfolios

that have a non-negative payoff in states 1 and 2, respectively. Recall that for a portfolio
θ = 〈θa , θb〉, the payoff in state s is the dot product θ · Ỹ (s) of θ and the state payoff
vector Ỹ (s) = 〈Ỹa (s), Ỹb (s)〉. Then

ΘA
 = {θ ∈ R | θ · Ỹ () ≥ }

ΘA
 = {θ ∈ R | θ · Ỹ () ≥ }

ΘA = ΘA
 ∩ ΘA

 .

The condition θ · Ỹ () =  means that θ is orthogonal or perpendicular to Ỹ ().
Figure 6.6 shows Ỹ () and the line of points perpendicular to Ỹ ().4 θ · Ỹ () > 
means that θ lies “above” the line perpendicular to Ỹ (), that is, on the side of Ỹ ().
This region, which (together with the line) is ΘA

 , is shaded in Figure 6.6. Figure 6.7
shows ΘA

 and ΘA
 , and their intersection ΘA .

You can check that each portfolio in ΘA not only has a non-negative payoff in each
state, but also a positive payoff in at least one state. Therefore, asset prices q = 〈qa , qb〉
satisfy no-arbitrage if and only if the cost q · θ of each portfolio in ΘA is positive. That
is, the set QNA of no-arbitrage prices is given by

QNA = {q ∈ R | q · θ >  for all θ ∈ ΘA }.

4. Note that on these axes, which are labeled “Asset a” and “Asset b,” we are drawing both portfolios 〈θa , θb〉
and state-payoff vectors 〈Ỹa (), Ỹb ()〉.
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Figure 6.7

〈Ỹa (),Ỹb ()〉

〈Ỹa (),Ỹb ()〉

      −−−−−−−











−

−

−

Asset a

Asset b

The sets ΘA
 and ΘA

 of portfolios with non-negative payoff in states 1 and 2, respectively.
ΘA

 is shaded, and ΘA
 has diagonal lines. Their intersection is the set ΘA of potential

arbitrage portfolios.

The boundaries of this set are perpendicular to the boundaries of ΘA , as seen in Fig-
ure 6.8. Take portfolios θ ′ and θ ′′ on the two boundaries. The asset prices such that
qθ ′ >  are the region that lies above the line perpendicular to θ ′; the asset prices such
that qθ ′′ >  are the region above the line perpendicular to θ ′′. The intersection is
QNA .

Observe, from Figure 6.7, that the ray perpendicular to θ ′ passes through Ỹ (), and
the ray perpendicular to θ ′′ passes through Ỹ (). Therefore, QNA is the region between
the rays that pass through Ỹ () and Ỹ (), as we set out to demonstrate.

Exercise 6.3. Consider a model of an asset market in which there are 2 states (1 and
2) and 2 assets (a and b) with the following payoffs:

Payoffs
Asset a Asset b

State 1 1 3
State 2 2 1

a. Verify that the asset prices qa = qb =  are no-arbitrage prices by calculating the
state prices.

b. Graph the entire set of no-arbitrage prices. Explain what you are doing, and specify
whether the boundary of the region you draw is in the set of no-arbitrage prices.

c. Suppose that you learn that a trader’s baseline wealth is $12 in state 1 and $10 in
state 2, and, after liquidating her portfolio, she has an allocation of $16 in state 1 and
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Figure 6.8

θ ′

θ ′′

〈Ỹa (),Ỹb ()〉

〈Ỹa (),Ỹb ()〉

QNA

      −−−−−−−











−

−

−

Asset a

Asset b

The shaded regions is the set ΘA of potential arbitrage portfolios. These portfolios must
have positive cost. The set of asset prices for which portfolio θ ′ has positive cost has lines
going up to the right. The set of asset prices for which portfolio θ ′′ has positive cost has
lines going down to the left. The intersection of these two sets—the crosshatch region—is
the set of no-arbitrage prices. Its boundaries are the rays through Ỹ () and Ỹ ().

$8 in state 2. Calculate her portfolio.

6.3.3 Complete and incomplete markets

An important fact is that there can be at most S linearly independent assets. Therefore,
there are necessarily redundant assets if the number of assets is greater than the number
of states (as in the example). If there are exactly S linearly independent assets, then we
say that markets are complete. If there are fewer than S linearly independent assets, then
markets are incomplete. Markets are necessarily incomplete if there are fewer assets
than states (J < S), but they can also be incomplete even if there are as many assets as
states (J ≥ S).

In our  ×  ×  ×  model, we assumed that the payoffs of the two assets were not
proportional, which means that the assets are linearly independent. Since there were
only two states, markets were complete. Much of our analysis of that model depended
on the completeness of markets, and does not hold when markets are incomplete.

In particular, we showed that the multiple budget constraints in the portfolio se-
lection problem could be reduced to a single budget constraint in the consumption
choice problem, with prices at consumption in each state given by state prices. Now
that consumption in period 0 is allowed, the analogue of that single budget constraint
is

z + p z + p z + . . . + ps zs = w + pw + pw + . . . + ps ws . (6.9)

All prices are in period-0 dollars, which is why the price of consumption in period 0
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is 1. p , . . . , ps are state prices.
The budget set that satisfies a standard budget constraint such as in equation (6.9)

has a dimension that is one less than the number of goods. For example, when there
are two goods, the budget set is a line. When there are three goods, it is a plane. In
this model, it is an S-dimensional “hyperplane.” If I am choosing quantities of J in-
dependent assets, I only have enough degrees of freedom to trace out a J-dimensional
set of allocations. If J < S, then my budget set is of a lower dimension than a standard
budget set, and so I do not face a standard consumption choice problem.

However, didn’t we show that for any no-arbitrage asset prices, there are corre-
sponding state prices? Yes, but these state prices do not entirely determine the con-
straints on consumption if markets are incomplete. The actual budget set will be a
strict subset of the standard budget set generated by the state prices, and there will be
more than one state-price vector.

The model with incomplete markets is complex and unfamiliar; this is the message I
am trying to convey in the previous paragraphs. However, when markets are complete,
we are back to a familiar world in which the portfolio selection problem reduces to a
standard consumption choice problem and the financial equilibrium is determined by
the real equilibrium in a hypothetical market in which consumption in each state is
traded directly.

The following fact will help us to show this:

Proposition . When markets are complete, the equilibrium allocations are the same
whatever are the S independent assets.

Here is brief explanation. Suppose we start out with complete asset markets, and add
a new set of S independent assets. Since among the original assets there were already
S independent assets, the new assets are redundant and hence do not affect the alloca-
tions. Since the S new assets are independent, each of the original assets is equivalent
to a portfolio of the new assets. Hence, we can then eliminate all the old assets without
affecting the allocations. We can thus replace the original assets with any S indepen-
dent assets without affecting the equilibrium allocations. (When assets are incomplete,
on the other hand, the equilibria depend not simply on how many independent assets
there are, but on what the payoffs of these assets are).

Let’s choose the simplest asset payoffs:

Payoffs
Asset State 1 State 2 … State S −  State S

1 1 0 … 0 0
2 0 1 … 0 0
... … …

.. . … …
S −  0 0 … 1 0

S 0 0 … 0 1

That is, there are S assets, and asset s pays 1 in state s and 0 in the other states. These
are called canonical asset returns. With canonical asset returns, the constraint

zs = ws + θỸ j (s) + . . . + θ J Ỹ J (s)
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in the portfolio selection problem becomes

zs − ws = θs .

The portfolio selection problem in equation (6.1) then reduces to

max
z ,z ,...,zs

ui (z , z , . . . , zS )

subject to: z + q z + . . . + qS zS = w + qw + . . . + qs ws .

For these canonical payoffs, the state prices are equal to the asset prices, and it is easy
to find the reduced-form budget constraint.

6.3.4 Pareto optimality and suboptimality

You surely know and love the First Welfare Theorem, which says that the equilibrium
allocations in the market for bananas, apples and oranges are Pareto efficient. Since the
asset market is mathematically equivalent to the fruit market when assets are complete,
we can conclude that the allocations in the asset market are also Pareto efficient, without
having to reprove the First Welfare Theorem!

It is always amazing that decentralized trade in markets can result in efficient allo-
cations, even if only under very unrealistic assumptions such as perfect competition,
perfect rationality of economic agents, and no externalities. One of the unrealistic as-
sumptions we made for the asset markets is that they are complete. One can show that
when markets are not complete, the equilibrium allocations are almost never efficient.
Consider an extreme case—when there are no assets at all. In this case, state-contingent
trade is not possible. This is only efficient if the original state-dependent allocations of
wealth are Pareto Optimal and there are no gains from trade. Now consider intermedi-
ate levels of incompleteness. The explanation of inefficiency is tricky for this case; here
is just a taste. Trade is possible, but the budget sets are too small to guarantee that the
marginal rates of substitution of wealth in the various periods and states are equal for
all consumers. For example, with two states, an allocation is a point in 3-dimensional
space. With complete markets, the budget set is a plane, but with incomplete markets
it is a line or a point. Tangency of the indifference curves (surfaces) for such budget
sets does not imply that all the households’ indifference curves have the same slope at
the points of tangency.

Are incomplete markets an important source of market failure? It is an empiri-
cal fact that markets are incomplete. Furthermore, there are other kinds of market
incompleteness not in our model that also reduce efficiency, such as restrictions on
short sales. However, a reason for this incompleteness is that transaction costs limit
the number of assets that are traded. Could it be that if we model transaction costs
and the endogenous creation of assets by financial intermediaries, we would find that
markets are “optimally incomplete,” given the transaction costs? This is a theoretical
question which economists cannot yet answer. Furthermore, economists do not yet
have empirical measurements of the welfare loss due to market incompleteness.

Exercise 6.4. This is a two-state example of arbitrage prices. Suppose that there is a
riskless bond with payoff of $1 in each state, and a risky stock with a payoff of $2 in
state 1 and $5 in state 2.
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a. Draw a graph showing the set of no-arbitrage prices for these two assets.

b. Suppose there is also a call option on the stock, with a strike price of $3, which
gives the buyer the option of acquiring the stock (with dividend) for $3. What are the
payoffs of this asset? What portfolio of the bond and the stock give the same payoffs?
What is the no-arbitrage price of the option, as a function of the prices of the bond and
the stock?

6.4 Capital Asset Pricing Model

State prices are useful for thinking about the determination of a real equilibrium, and
for deriving many properties of asset prices and financial equilibria. However, they are
not of direct empirical use because they are difficult to measure.

With additional assumptions on preferences and/or the distributions of asset pay-
offs and wealth, it is possible to derive a variety of empirically useful formulae about
asset prices. In this section, we will derive the best known of these, the Capital Asset
Pricing Model (CAPM).

Assume that markets are complete. We need the following two properties of com-
plete markets:

• Equilibrium real allocations are efficient, and the shadow prices of consumption
in each state is its state price.

• For any payoff Ỹ , there is a portfolio with this payoff.

Let p , . . . , pS be the equilibrium state prices. Then the equilibrium price of asset
j is

q j = pỸ j () + · · · + pSỸ j (S). (6.10)

Consider the equilibrium situation of a typical trader i . For now, I will omit the
superscript i , to simplify notation. Let z̃ = 〈z , z , . . . , zS〉 be the trader’s equilibrium
allocation. Then z̃ satisfies the trader’s first-order conditions for utility maximization.
This means that the ratio of the price (ps) of consumption in state s to the price (p = )
of consumption in period 0 must be equal to the ratio of the marginal utility in state s
to the marginal utility in period 0:

ps =
∂U /∂zs

∂U /∂z
for s = , . . . , S. (6.11)

Assume that the trader is an expected utility maximizer with (for simpler notation)
time-separable and time-homogeneous utility:

U (z , z , . . . , zS ) = u(z ) + δ(πu(z ) + · · · + πSu(zS )).

u is the VNM utility function, δ is the discount factor, and π , . . . , πS are beliefs. The
right-hand side is the utility in period 0 plus the discounted value of the expected utility
in period 1. Then equation (6.11) becomes

ps =
δπsu ′(zs )

u ′(z )
. (6.12)
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and the asset-pricing formula in equation (6.10) becomes

q j =
δ

u ′(z )
(

πu ′(z )Ỹ j () + · · · + πSu ′(zS )Ỹ j (S)
)

=
δ

u ′(z )
E[Ỹ j u ′( z̃)]. (6.13)

This is mildly interesting, showing how the asset price is higher when payoffs are
positively correlated with marginal utilities (the asset payoff is high when marginal
utility is high, which is when consumption is relatively scarce), but is still lacks em-
pirical usefulness because the state-dependent equilibrium marginal utilities are even
harder to measure than state prices.

Now assume that the trader has quadratic utility, which means that5

u(z) = z − 


bz .

Recall that a quadratic utility function is eventually decreasing. We assume that it is
increasing over any feasible wealth levels for the trader. Recall also that the quadratic
utility function is the one function for which variance is a measure of risk. We do
not use this property directly. Instead, the property that we make use of is that the
derivative is linear:

u ′(z) =  − bz .

Then equation (6.12) becomes

ps =
δπs ( − bzs )

 − bz
. (6.14)

This formula is useful only if we know the trader’s utility function and state-dependent
consumption, but by aggregating over the traders we can obtain a much more empir-
ically useful formula in terms of aggregate consumption. We start by inserting the
superscript i for trader i (on δ i , b i and z i

s) in equation (6.14), and rearranging:


δ i

(


b i − z i


)
ps = πs

(


b i − z i
s

)
.

Next we sum both sides of the equation over traders i = , . . . , n:
n

∑
i=


δ i

(


b i − z i


)
ps =

n

∑
i=

πs

(


b i − z i
s

)

ps = πs
∑n

i=


bi − ∑n
i= z i

s

∑n
i=


δi

( 
bi − z i



) .

Because z̃ i is part of an equilibrium allocation, total consumption must equal the total
endowment. That is, ∑n

i= z i
s = ws , where ws = ∑n

i= w i
s is the total endowment in state

s. Let

A =
∑n

i=


bi

∑n
i=


δi

( 
bi − z i



)
B =


∑n

i=


δi

( 
bi − z i



) .

5. This particular quadratic form is perfectly general, because it is a linear affine transformation of any more
general quadratic function a x + a x + a.
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Then we have

ps = πs (A − Bws ).

Therefore, equation (6.13) can be written

q j = π (A − Bw )Ỹ j () + · · · + πS (A − BwS )Ỹ j (S)

= A(πỸ j () + · · · + πSỸ j (S)) + B(πwỸ j () + · · · + πS wSỸ j (S))

= A E[Ỹ j ] − B E[Ỹ j w̃],

where w̃ is the random aggregate endowment 〈w , . . . , wS〉 in period 1.
We could use this formula directly. Aggregate wealth as a correlation of an asset’s

payoff is easier to measure than quantities such as state prices. A and B are parameters
that depend on the utility functions. They could be estimated from some data where
q j and Ỹ j are known, and then used to price other assets. However, it is common to
write this as a “beta” model.

First, divide the pricing equation through by q j to obtain an equation involving the
return R̃ j = Ỹ j /q j of the asset:

 = A E[R̃ j ] − B E[R̃ j w̃]. (6.15)

Since markets are complete, there is a “market” portfolio whose payoff is perfectly
correlated with the aggregate endowment, and hence has payoff Ỹm = w̃. Let its price
and return be qm and R̃m = Ỹm /qm , respectively. Then w̃ = qm R̃m , and equation (6.15)
becomes

 = A E[R̃ j ] − Bqm E[R̃ j R̃m ]. (6.16)

Recall the definition of covariance:

Cov(R̃ j , R̃m ) = E[R̃ j R̃m ] − E[R̃ j ]E[R̃m ].

Then equation (6.15) becomes

 = A E[R̃ j ] − Bqm (Cov(R̃ j , R̃m ) + E[R̃ j ] E[R̃m ])

 = (A − Bqm E[R̃m ])E[R̃ j ] − Bqm Cov(R̃ j , R̃m ).

This equation holds for a riskless portfolio with return R in each state. Since
Cov(R , R̃m ) = , we have

 = (A − Bqm E[R̃m ])R

/R = (A − Bqm E[R̃m ]).

Therefore, our pricing equation is

 =


R
E[R̃ j ] − Bqm Cov(R̃ j , R̃m ) (6.17)

E[R̃ j ] − R = Bqm Cov(R̃ j , R̃m )R . (6.18)

For the market portfolio with return R̃m , Cov(R̃m , R̃m ) = Var(R̃m ), and we have

E[R̃m ] − R = Bqm Var(R̃m )R

Bqm =
E[R̃m ] − R

Var(R̃m )R
.
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Substituting the right-hand side for Bqm in equation (6.18):

E[R̃ j ] − R =
Cov(R̃ j , R̃m )

Var(R̃m )
(E[R̃m ] − R )

E[R̃ j ] − R = β j (E[R̃m ] − R ),

where

β j =
Cov(R̃ j , R̃m )

Var(R̃m )
.

In the typical presentation of the CAPM, this formula is derived using mean-variance
analysis. R̃m is the return on the “aggregate” portfolio, and β j is called the beta of asset
j . Our derivation gives a slightly different interpretation. R̃m is the return on a port-
folio that is perfectly correlated with the aggregate portfolio as long as all variations in
wealth are due to variable payoffs of tangible assets that are traded. In a multiperiod
setting, there is a further distinction. Wealth is equal to consumption in this simple
model. With more periods, wealth and consumption differ. In the generalization of the
formula, we would be interested in the correlation of an asset’s payoffs with aggregate
consumption, leading to what is called a consumption-based CAPM.
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Chapter 7

Contracting with Hidden Actions

7.1 Efficient contracts with moral hazard

Exercise 7.1. Consider the following problem of moral hazard between a principal
and an agent (e.g., an employer and an employee). The agent works on a project that
may result in a gross profit to the principal of either 1600 or 2500. The agent can exert
low or high effort, denoted eL and eH , respectively. If low, the probability that the gross
profit is 2500 is equal to 1/2; if high, that probability is 8/9.

The principal is risk neutral. The agent is an expected-utility maximizer who is risk
averse with respect to money. His utility when receiving wage w and exerting effort e
is

u(w , e) =

{
w/ if e = eL

w/ −  if e = eH .

The purpose of this exercise is to derive the entire set of efficient contract. This
requires the use of numerical software. The main concepts this exercise illustrates are
the constraints that define the first-best and second-best contracts.

a. Calculate the expect gross profit with low effort and with high effort.

b. Plot the frontier of the set of low-effort contracts and of the set of high-effort con-
tracts for the case where there is no moral hazard (in utility space, i.e., worker’s ex-
pected utility on one axis, and the employer’s expected net profits on the other axis).
Show your calculation.

c. Repeat the last question for the case of moral hazard.

d. Suppose that, if no contracting takes place, then the principal’s profit is 0 and the
agent’s utility is 30. On a separate graph, plot the set of individually rational and effi-
cient contracts both with and without moral hazard.

e. Pick a point in the interior of the set of IR and efficient contracts without moral
hazard (neither party gets all the gains from trade). Now suppose that we switch to a
regime with moral hazard. Indicate which IR and efficient contracts with moral hazard
make both parties worse off than under the original outcome you picked.

Exercise 7.2. What is wrong (and what is right) with the following: “Basing teachers’
pay on surprise classroom inspections or the results of student exams is exploitive.
Teachers should strongly resist this when negotiating their contracts.”

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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7.2 Contracts that give one party the gains from trade

Exercise 7.3. Assume, in Exercise 7.1, that the worker (you) has a reservation utility
of 30 units, and that the employer gets all the gains from trade.

a. Suppose there is no moral hazard. What contract would the principal offer if he
could get all the gains from trade?

b. Suppose there is moral hazard. What contract would the principal offer if he could
get all the gains from trade?

Exercise 7.4. Reinterpret Exercise 7.1 as an example moral hazard in insurance mar-
kets. You are buying insurance against the theft of money from your house. Suppose
that there is some chance that someone will enter your house and steal $900 that you
have lying around. Your total wealth is $2,500. If you stay home all the time (high level
of care, eH) the probability of a theft is /. If you go out often (low level of care, eL),
the probability of theft is /. Your utility from money w and the level of care is

u(w , e) =

{
w/ if e = eL

w/ −  if e = eH .

a. What is the expected loss for each of the two levels of care.

b. Assume that the insurance companies make zero profits, so that you get all the
gains from trade. What is the best contract you can design (i.e., what is the level of
care, the level of coverage, and the premium) if there is no moral hazard?

c. Is this policy incentive compatible if the insurance companies cannot observe whether
you leave the house alone?

d. With moral hazard, what is the optimal contract you can design which has as a
“clause” that you go out often?

e. With moral hazard, what is the optimal contract you can design which has as a
“clause” that you stay home? (It suffices to give the equations that define the optimal
contract.)

Exercise 7.5. A friend has asked you to sneak a six-pack of beer for him into a concert.
Being the kind of friend that you are, you cannot be trusted not to drink the beer
yourself just before going into the concert. Unfortunately, if you do not drink the beer,
then there is some possibility (1/10) that the beer will be confiscated by security on
your way in. Thus, if you show up with no beer, your friend cannot tell whether you
drank the beer or it was confiscated. (Remember, this is fiction.) You are going to
offer a deal to your friend where the fee your friend pays for your service depends on
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whether you deliver the beer. Here are the important things you need to know in order
to design an optimal contract:

1. Your utility if you get x dollars out of this transaction is

u(x) =

{
−e−.x if you don’t drink the beer

−e−.(x+) if you drink the beer.

(x is positive if you receive a payment from your friend and negative if you pay
money to your friend.) Thus (i) you are risk averse, with constant absolute risk
aversion, and (ii) beer and money are perfect substitutes, with the six-pack being
equivalent to $5.

2. Your friend’s utility if she gets x dollars out of this transaction is

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

x if she doesn’t drink the beer.

x +  if she drinks the beer before the concert

x +  if she drinks the beer in the concert

(x is positive if she receives a payment from you and is negative if she pays money
to you.) Thus (i) your friend is risk neutral, and (ii) beer and money are perfect
substitutes, with beer being equivalent to $8 if drunk in the concert and $3 if drunk
before the concert.

a. Suppose your friend will accept any deal you offer her for which her expected utility
is at least 3, which is what she would get if she rejected your deal and just drank the
beer before the concert.

Write down the two equations whose solution gives the optimal contract. (OP-
TIONAL: Solve the two equations numerically.)

b. Suppose the bargaining power is shifted to your friend. She makes a take-it-or-
leave-it offer, and you accept the deal as long as your expected utility is at least − (i.e.,
−e), which is what you would get if you didn’t make any deal with your friend. Write
down the two equations whose solution gives the optimal contract for your friend.
(This time, if you write the equations properly, you can solve them easily.) What is
the first-best contract, and how do the first-best and second-best contracts compare in
terms of the expected utility that you and your friend get?



.



Chapter 8

Monopolistic screening with
hidden valuations

8.1 Nonlinear pricing

8.2 Differentiated products

Exercise 8.1. New Jersey state law prohibits self-service gas. The following example
of monopolistic screening may be relevant!

In the following, imagine that gas is not a divisible good; e.g., a consumer either
gets a fill up or does not.

Suppose that a town has a single gas station. Consider the pricing decisions of
this gas station, taking the prices of gas in the surrounding towns as fixed. Suppose
that there are two types of consumers, frugal and lazy. The lazy consumers will pay
up to $1.20 per gallon, whereas the frugal ones will pay up to $1.00 per gallon. (The
difference lies in the willingness of the consumers to drive to a neighboring town in
order to save money.) The cost of gas, including operating expenses, for the gas station
is $.90 per gallon.

a. If the station can charge different prices to frugal and lazy customers (e.g., because
all frugal customers drive Hyundai and and all lazy ones drive Mercedes), what prices
will it charge to each type?

b. Suppose instead that the gas station cannot distinguish between a frugal and lazy
consumer. (Suppose also that it is illegal for the gas station to offer self-service gaso-
line.) What prices might the gas station charge, and what information would you need
to know to determine which price is optimal?

c. Suppose again that the station cannot tell who is frugal and who is lazy, but the
station can offer self-service gasoline. Furthermore, suppose that self-serve gas is an
inconvenience to the customer, but is not any cheaper for gas stations to provide. Sup-
pose that frugal customers are willing to pay up to $.01 per gallon for full serve, whereas
lazy customers are willing to pay up to $.10 per gallon for full serve.

(Note: The insurance example studied in class is conceptually closely related, but I
have simplified this problem by allowing only two levels of inconvenience, full-serve
and self-serve, which would be analogous to allowing only two levels of coverage in
the insurance example.)

1. For each of the following pricing strategies, find a better price strategy and explain
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why it is better:
(a) Full-serve: $1.15. Self-serve: $.99.
(b) Full-serve: $1.06. Self-serve: $.99.

2. Then find the optimal pricing strategy, among those with which the station sells
both full and self-serve gasoline. Specify for which consumers the self-selection
constraint is binding and for which consumers the individual rationality constraint
is binding.

3. Who is better off and who is worse off (among frugal customers, lazy customers,
and the gas station), compared to when self-serve gasoline is not allowed?

8.3 Bundling



Chapter 9

Screening with adverse selection

9.1 The nature of adverse selection

Moral hazard arises when parties to a contract take actions after signing the contract
that affect each other, and these actions are not observable to all parties.

Now we consider another kind of information asymmetry, when parties have dif-
ferent information at the time of contracting. This information is about exogenous char-
acteristics of the agents (i.e., characteristics not having to do with the agents’ future
actions) that are relevant to the contractual relationship. Here are some leading exam-
ples:

• In product markets, the sellers typically have more information about the goods
than the buyers.

• In labor markets, the potential employees have more information about their skills
and productivity than the employers.

• In insurance markets, different individuals have different risks, for exogenous rea-
sons.

– The probability of a fire in a firm might depend on the condition of the internal
wiring, on how smart the manager of the firm is, or on the neighborhood (if
there is a threat of arson).

– The probability of an accident depends on how good the driver is.
– The probability of a heart attack depends on a person’s current health.

Insured parties know more about these risks than the insurers.

9.1.1 Adverse selection

Consider one of the contracting situations described above, in which there is one fully
informed party with private information about her characteristics—which we call her
type—and one uninformed party. If you are the uninformed party, then you have to
take into account that the willingness of the other person to accept a contract may
depend on her type. Therefore, only a selection of the possible types will agree to a
contract. It is often the case that the people with whom it is least desirable to contract
also have the worst outside options, and hence are the most likely ones to accept a
contract. The selection of types who accept a contract is then a bad selection for the
uninformed party, and this phenomenon is called adverse selection. Here are some
examples:

• In the used-car market, a bad car is not only worth less to a buyer, but is is also
worth less to a seller. Hence, the seller who would accept a fixed offer for their cars
are those with the most cars.
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• In labor markets, the least productive workers have the most difficulty making a
living on their own or finding a decent job, and hence are the most likely ones to
accept any job offer.

• In insurance markets, the highest-risk consumers benefit the most from buying
insurance, and hence are the most likely to accept a given contract.

If you, as the uninformed party, do not take this adverse selection into account, you
may be in for an unpleasant surprise. For example, if an insurance company calculates
the actuarially fair premium based on the statistical average of the risks over the whole
population of potential insured, then the high-risk parties will tend to buy the insur-
ance but the low-risk parties will not. The statistical average of the risk for the group
that actually buys the insurance will be higher than for the whole population, and so
the insurance company ends up losing money.

If you are aware of this adverse selection problem, then you should interpert the
willingness of someone to contend with you as a bad signal about the benefit to you of
trading with that person. As Groucho Marx said, “I would never want to join a club
that would have me as a member.”

Here is an example, framed as a story about the used-car market. Suppose that you
are considering buying a car from a man named Frank. You know that Frank’s car is
worth $1,000 more to you than to him (because you just got a job to which you need
to commute, and Frank just quit a job from which he was commuting). Let θ be the
value of the car to you, which is a measure of the quality of the car.

Suppose that you are in a position to make a take-it-or-leave it offer to Frank. If you
knew θ, you would just offer Frank θ for the car (or θ plus a penny). This is the smallest
amount that Frank is willing to accept. Frank is then indifferent between trading and
not trading, and you get all the gains from trade (you pay θ and the car is worth θ+
to you). Trade always takes place, which is efficient since the car is always worth more
to you than to Frank.

The problem is that Frank knows θ but you do not. You cannot rely on Frank
to reveal θ; he will always say whatever gets him the highest offer, independently of
his true θ. Therefore, your offer cannot be contingent on θ. In choosing your offer,
you have to balance the amount you pay with the possibility of trade. For example,
suppose that you are deciding whether to offer $3,000 or $4,000. If you offer $3,000,
Frank accepts whenever θ ≤ , and so the car is worth between $1,000 and $4,000
to you. If you increase your offer to $4,000, then you also purchase the car when θ is
between 3,000 and 4,000. This is good, since the car is worth $4,000 to $5,000 to you
for these values of θ. On the other hand, you still purchase the car when θ is between
0 and 3,000, but you have to pay $1,000 more, which is bad.

Suppose that you are risk neutral and choose your offer x to maximize the expected
value of your surplus, V (x). You trade when θ ≤ x, and hence Prob (θ ≤ x) is the
probability of trade. Conditional on trade, the expected value of the product to you
is E[θ | θ ≤ x] + , and so the expected value of your surplus is E[θ | θ ≤
x] +  − x. Hence,

V (x) = Prob (θ ≤ x)(E[θ | θ ≤ x] +  − x).

For example, suppose that θ is distributed uniformly between 0 and 10,000. (This
means that F(θ) = θ/,  and f (x) = /, .) Then E[θ | θ ≤ x] = x/, and
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Prob (θ ≤ x) = x/, . F(x) = x/. Therefore, expected surplus V (x) is

V (x) =
x

, 

( x

+  − x

)
= − x

, 
+

x


.

The first-order condition for maximizing V (x) is

V ′(x) = − x
, 

− 


= .

The solution is x = , .
Look at the inefficiency that is caused by this informational asymmetry! It is effi-

cient (first-best) for you to always trade, but instead you only trade when θ ≤ ,
or / of the time. Without the informational asymmetry, your surplus is $1,000 for
sure. With the informational asymmetry, your expected surplus is just

V () = − 


+




= .

(Conditional on trading, the expected value of θ is 500 and hence your expected surplus
is 500; however, the probability of trade is just 1/10.)

On the other hand, when θ < , Frank is better off with the private information.
When someone gets additional surplus because of private information, she is said to
earn informational rents.

This example can be reinterpreted with the labor market or insurance stories (with
monopsonistic employers or monopolistic insurance companies). In the labor market
story, θ is the worker’s reservation wage (the wage the worker can obtain elsewhere),
and θ +  is the value of the worker to the firm. In the insurance story, θ is the
certainty equivalent of the consumer’s risky wealth, and θ +  is the expected value
of the consumer’s wealth (x is the certain wealth guaranteed by the insurance company
to the consumer).

If the seller makes the take-it-or-leave-it offer, and hence, gets the gains from trade
in the absence of asymmetric information, the analysis is quite different but again there
is a welfare loss because trade does not always take place.

9.2 Screening

In Section 9.1.1, the buyer makes a single offer, and trade either takes place at this offer
or does not take place at all. There is no point in offering several different amounts of
money and letting the seller choose, because the seller will always choose the largest
amount of money.

However, if there is an extra dimension along which contracting is possible, it may
be possible to offer several different contracts, each of which is accepted for some values
of θ. For example, applicants might be able to select from jobs with commission-based
pay and jobs with fixed salaries. The good workers, for whom commissioned based pay
has the highest expected value, may prefer commissions over salary, whereas the low-
productivity workers prefer the fixed salary over the commissions. This characteristic-
dependent selection of contracts is called self-selection, and the procedure of using
menus of multi-dimensional contracts to induce self-selection is called screening.
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A mathematically equivalent example is screening in insurance markets. Instead of
high and low-productivity workers, we have low and high-risk consumer. Instead of a
commission versus a fixed wage, we have partial coverage versus full coverage. In this
section, I will develop a model of such screening, using the interpretation of insurance
markets.

9.2.1 An insurance story

Consider the following fire-insurance example. There are many firms with a risk of a
fire, which results in a loss of L = $, . Each firm’s gross profit without the loss
(good state) is wg = $, , and with the loss (bad state) is wb = $, . If a firm
buys an insurance contract which has a premium of p and provides coverage x when
there is a fire, then its net profits zg and zb in the good and bad states, respectively,
after adjusting for insurance premiums and reimbursements, are

zg = wg − p

zb = wb − p + x .

Each firm is owned by a risk-averse expected utility maximizer whose state-independent
utility function over net profit is u(z) = z /.

There is some intrinsic characteristic of each firm that affects the probability of a
loss, as discussed in the beginning of Section 9.1. For fraction α of the firms, called
low-risk firms, the probability of a loss is πL = /. For the other fraction  − α of the
firms, called high-risk firms, the probability is πH = /.

There is one or more risk neutral insurance companies, or a risk-neutral govern-
ment that provides insurance.

9.2.2 Efficient contracts when there is no adverse selection

Consider what happens when each firm’s type is observable to the insurance companies
in a competitive insurance market. Then insurance companies can sell one policy CH

to high-risk firms, and another C L to low-risk firms, and there really are two separate
insurance markets.

With competitive insurance markets, the equilibrium policies provide full coverage
and are actuarially fair:

Low risk Full coverage, at a premium of $20,000. Utility is , / = .
High risk Full coverage, at a premium of $50,000. Utility is , / = .

The competitive outcome is Pareto efficient with respect to the welfare of the three
groups: low-risk firms, high-risk firms, and insurance companies. That is, it is im-
possible to make the members of one of these groups better off, without making the
members of another group worse off. For example, suppose we want to make the low-
risk firms better off. Since in the competitive equilibrium, these firms have full cov-
erage and hence bear no risk, we would have to increase the expected value of these
firm’s income to make them better off. This means that either the expected value of the
high-risk firms’ income falls, which leaves them worse off, or the expected profits of
the insurance companies fall, leaving them worse off.
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Figure 9.1
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In order to consider the possibility of a wider range of Pareto efficient outcomes,
imagine that instead of competitive insurance companies, there is only a risk-neutral
government that provides insurance. This government can impose any insurance con-
tracts it wants,1 but it is interested in the welfare of the firms and also in its own ex-
pected profits or deficit. Hence it looks for menus {C L , CH } of contracts that are ef-
ficient with respect to the expected utilities of low and high-risk firms and its own
expected profits. Since the government is risk neutral, a menu of contracts is Pareto
optimal if and only if all firms have full coverage. The premiums just determine the
distribution of income between low-risk firms, high-risk firms, and the government.

The entire Pareto frontier, which is the set of utilities for the efficient outcomes, sits
in three dimensions (each point is given by the expected utility for low-risk firms, the
expected utility for high-risk firms, and the expected profits of the government), but we
can look at a two-dimensional “slice” by fixing the expected profits of the government
and just showing the trade off between the low-risk and high-risk firms’ utilities. Such
a slice is shown in Figure 9.1 for the case where the government earns zero expected
profits. It is drawn for α = / and α = /.

The menu where both types of firms get the same premium—and hence the same
contract and utility—is called a pooling outcome. The other menus are called separating
outcomes. In the pooling outcomes for which the government earns zero expected
profits, the common premium p is the average expected loss over all the firms. For

1. However, we assume that it treats all low-risk firms alike and all high-risk firms alike.
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α = /, this average expected loss is

(/)(/)(, ) + (/)(/)(, ) = , .

Each firm’s utility is u(, ) = . When α = /, this average expected loss is
lower because there are fewer high-risk firms:

(/)(/)(, ) + (/)(/)(, ) = , .

Each firm’s utility is thus higher: u(, ) = .
Compare this with the competitive outcomes, which does not depend on α because

it does not involve any subsidies from one type of firm to the other:

Utilities low risk high risk
no insurance 305 244

competitive outcome 316 265
pooling contract α = / 292 292

pooling contract α = / 311 311

In this example, the low-risk firms prefer no insurance to the pooling contract, when
α = /, but the opposite is true when α = /.

Moving from the bottom-right to the top-left of either of the Pareto frontiers in
Figure 9.1, the other points are found by lowering the premiums for high-risk firms
and raising the premiums for the low-risk firms, but maintaining full coverage for all
firms and keeping the average premium, α pL + ( − α)pH , equal the average expected
loss, απL L + ( − α)πH L.2

9.2.3 Self-selection constraints with adverse selection

Suppose now that the insurance companies or the government cannot observe which
firms are low risk and which are high risk. The government can no longer dictate who
gets what contract. Instead, it can only offer a menu of contracts, and let each firm pick
the one it wants.3 This is called self-selection.

Recall that when studying moral hazard, it was convenient for us to work with
implicit contracts that contained unenforceable clauses, so that contracts had the same
clauses with and without moral hazard. With moral hazard, the unenforceable clauses
had to be self-enforcing, or incentive compatible, which was an additional feasibility
constraint on contracts. We will take a similar approach here. As when there is no
hidden information, the government designs a menu {C L , CH } of contracts, where C L

2. Equivalently, the average final wealth zL and zH of the low-risk and high-risk firms must equal the
average expected value of their endowments:

αzL + ( − α)zH = α
( 

 ,  + 
 , 

)
+ ( − α)

( 
 ,  + 

 , 
)

.

αzL + ( − α)zH = α(, ) + ( − α)(, ).

zH = ,  +
α

 − α
(,  − zL ).

Hence, we can trace out the Pareto frontier 〈u(zL ), u(zH )〉 for the values of zL and zH that satisfy the
governments zero-profit condition.
3. But as a technical simplification, we assume that when firms are indifferent between contracts, they
choose the contract the government would like them to choose.
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is for low-risk firms and CH is for high-risk firms. This designation is feasible only if
the firms voluntarily choose their designated contracts, which means that the following
self-selection constraints must be satisfied:

C L �L CH and CH �H C L ,

where�L and�H are the preferences over contracts of the low-risk and high-risk firms,
respectively. We might say “constrained-efficient” or “second-best,” to distinguish the
efficient outcomes given these self-selection constraints from the “efficient” or “first-
best” outcomes that are efficient when there is no adverse selection and hence no self-
selection constraints. This is analogous to constrained efficiency with moral hazard,
where we had to take into account the incentive compatibility constraints.

If CL = CH , i.e., if both types of firms end up with the same contract, then we
say the menu or outcome is pooling. Otherwise, we say it is separating. When there
is adverse selection, separating outcomes cannot have full insurance for both types of
firms, because then contracts would differ only by the premium charged and all firms
would choose whichever contract has the lowest premium. Reducing coverage hurts
the high-risk firms more than the low-risk firms. Hence, we induce separation by giving
less coverage to the low-risk firms than to the high-risk firms.

To show this formally (but graphically), we need to compare the preferences of the
firms over contracts. Each contract yields a unique state-dependent allocation 〈zg , zb〉,
which is the same whether the contract is accepted by a low-risk or high-risk firm, and
each allocation is the result of a unique contract. Hence, we can just identify contracts
with the allocation they yield, which is more intuitive when depicting preferences and
indifference curves.

Figure 9.2 shows two indifference curves in the set of allocations. Stop and decide
which is an indifference curve for low-risk firms, and which is an indifference curve
for high-risk firms. If you are having trouble, consider the following question. Start at
the allocation where the two curves cross, and imagine that you reduce consumption
in the good state by $20,000. Who needs to get more extra money in the bad state
to end up indifferent to the initial allocation? Try also to compare the slopes of the
indifference curves at the point where they cross.

Here is the answer: The low-risk firms care less about money in the bad state than
high-risk firms do, since the bad state is less likely for them than for the high-risk firms.
Therefore, they need more extra money in the bad state to make up for a loss of money
in the good state. This means that the gray curve is the low-risk indifference curve and
the black curve is the high-risk indifference.

To calculate the slope of the indifference curves, we should first write down the
firms’ utility functions over allocations 〈zg , zb〉 of wealth in the good and bad states,
respectively. Let U L (zg , zb ) and U H (zg , zb ) be the utility functions of the low-risk and
high-risk firms, respectively:

U L (zg , zb ) = ( − πL )u(zg ) + πLu(zb ) = 
 z / + 

 z /

U H (zg , zb ) = ( − πH )u(zg ) + πH u(zb ) = 
 z / + 

 z / .

Then the gradients at the point 〈zg , zb〉 where the two curves cross, which are perpen-
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Figure 9.2
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Which indifference curve is for a low-risk firm and which is for a high-risk firm?.

dicular to the indifference curves at that point, are〈
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〉
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


u ′(zb )
〉

〈
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∂zg
,

∂U H

∂zb

〉
=
〈




u ′(zg ),



u ′(zb )
〉

.

The low-risk gradient points further down than the high-risk gradient, and hence the
indifference curve is steeper. This is shown in Figure 9.3. Since the low-risk indiffer-
ence curve is always steeper than the high-risk indifference curve where they cross,
they can cross only once. This is called the single-crossing property.

In summary, we have shown:

Proposition . An indifference curve for a lower risk firm and an indifference curve for
a high-risk firm can cross only once, and the low-risk indifference curve is steeper at the
crossing point.

Note the graphical significance of the self-selection constraints for a menu {C L , CH }
of contracts:

• C L �L CH means that CH lies below the low-risk indifference curve through C L .
• CH �H C L means that C L lies below the high-risk indifference curve through CH .

Figure 9.4 shows a menu {C L , CH } that satisfies the self-selection constraints, and a
menu {Ĉ L , CH } that violates the self-selection constraint of high-risk firms.
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Figure 9.3
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Money in the bad state is relatively more important to the high-risk firms than the low-risk
firms because the bad state is more likely for the high-risk firms.

Figure 9.4
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The menu {C L , CH } satisfies both self-selection constraints. The menu {Ĉ L , CH } violates
the self-selection constraints of high-risk firms, because high-risk firms prefer Ĉ L to CH .
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Figure 9.5
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The crosshatch region is the set of contracts C L such that {C L , CH } satisfies the
self-selection constraints. For separating menus, the low-risk firms get less coverage than
the high-risk firms.

Let’s pick a contract (allocation) CH for the high-risk firms, and ask which contracts
C L for the low-risk firms are such that {C L , CH } satisfies the self-selection constraints.

• {C L , CH } satisfies the low-risk self-selection constraint if C L lies above the low-risk
indifference curve through CH .

• {C L , CH } satisfies the high-risk self-selection constraint if C L lies below the high-
risk indifference curve through CH .

Both constraints are satisfied in the intersection of these two regions, which is the
crosshatched region in Figure 9.5.

Contracts in this region have less income in the bad state and more in the good
state, compared to CH , and hence have less coverage. Therefore, we have shown:

Proposition . To satisfy the self-selection constraints, the high-risk firms must get more
(or as much) coverage as low-risk firms.

9.3 Efficient contracts with adverse selection

All pooling contracts are second-best (since they are first-best and satisfy the self-
selection constraints). The second-best separating menus are more interesting. In this
section, we will come up with the following characterization of an efficient separating
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Figure 9.6
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One type of firm gets full coverage: {C L , CH } satisfies self-selection, but neither type of
firm has full coverage. {C L , CEH } also satisfies the self-selection constraints. Both types of
firms are indifferent between {C L , CEH } and {C L , CH }. The government’s expected prof-
its from high-risk contracts increase by the risk premium E[CH ]−CEH . Hence, {C L , CEH }
Pareto dominates {C L , CH }.

menu:

One firm has full coverage and a binding self-selection constraint.
This firm is the one that is worse off than under the pooling contract that
gives the government the same expected profits (which we call the revenue-
equivalent pooling contract).

(When we say that a self-selection constraint is binding, we mean that the party is
indifferent between the two contracts. For example, if C L ∼L CH , the low-risk self-
selection constraint is binding. If C L �L CH , it is satisfied but not binding.)

Proposition . If a separating menu is efficient, then either low-risk or high-risk firms
get exactly full coverage.

As is typical for proving this kind of result, to show that an efficient menu has
a particular property, we show that if a menu does not have the property then it is
not efficient (we prove the “contrapositive”). To show that a menu is not efficient, we
construct a Pareto-dominating menu of contracts.

Proof. Suppose {C L , CH } satisfies the self-selection constraints but neither type of firm
has full coverage. Such a situation is shown in Figure 9.6. Pick the type of firm with
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the lower certainty equivalent, that is, the type whose indifference curve intersects the
◦ line at a lower point. In Figure 9.6, this is the high-risk firm: CEH ≤ CEL . Then
we can replace CH by CEH without violating the self-selection constraints:

• The high-risk firms weakly prefer CEH to C L since they weakly prefer CH to C L

and they are indifferent between CEH and CH .
• The low-risk firms weakly prefer C L to CEH since they are indifferent between C L

and CEL and CEL ≥ CEH .

Both types of firms are indifferent between {C L , CEH } and {C L , CH }, the government’s
expected profits increase by the high-risk firms’ risk premium: E[CH ] − CEH . Hence,
the menu {C L , CEH } Pareto dominates {C L , CH }. Similarly, if CEL ≤ CEH , then the
menu {CEL , CH } Pareto dominates {C L , CH }. �

Proposition . If a separating menu is efficient, then the self-selection constraint of the
firm with full coverage is binding.

Proof. The idea is that a firm that does not have full coverage bears risk in order to keep
the other type of firm from choosing its contract. We want to reduce this risk as much
as possible, which means up to where the other firm is just indifferent between switch-
ing. For example, suppose the high-risk firm has full coverage, but its self-selection
constraint is not binding. This means that CH �H C L , and C L lies strictly below the
high-risk indifference curve through CH . This situation is shown in Figure 9.7. If we
move the low-risk contract in the direction of the arrows along the low-risk indiffer-
ence curve (toward the ◦ line), we are reducing the risk and (since the low-risk firm
is neither better or worse off) reducing the expected value of the low-risk firms wealth.
This increases the government’s expected profits. We can move C L all the way up to
Ĉ L , on the high-risk indifference curve, without violating the self-selection constraints.
Hence, {Ĉ L , CH } Pareto dominates {C L , CH }. �

Proposition . If a separating menu is efficient, then the firms with full coverage and
binding self-selection constraints are the ones that are worse off than under the revenue-
equivalent pooling equilibrium.

Proof. The revenue-equivalent pooling contract for a menu {C L , CH } gives each firms
wealth between E[C L ] and E[CH ]. If the high-risk firms have full coverage, then low-
risk firms prefer C L to the constant amount CH , and so E[C L ] > CH . Hence, the high-
risk firms have lower wealth in CH than in the revenue-equivalent pooling contract. �

9.4 The efficient contracts with zero expected profits

Let’s consider what a “slice” of the Pareto frontier looks like with adverse selection.
I will show how to calculate it for the case where the government has zero expected
profits.

Starting from the pooling contract, we can make the low-risk firms better off and
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Figure 9.7
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The self-selection constraint of firms with full coverage is binding: {C L , CH } and satisfies
self-selection and the high-risk firm get full coverage, but they strictly prefer C L to CH .
Ĉ L is closer to ◦ line, and hence government appropriates greater risk premium from
low-risk firms. Hence, {Ĉ L , CH } Pareto dominates {C L , CH }.

the high-risk firms worse off by increasing the premium of the high-risk types but
continuing to provide them with full coverage. The premium rate for low-risk types
falls (since the government earns zero expected profits), but to keep the high-risk firms
from choosing the low-risk contract, the level of coverage must also fall (just enough
so that the high-risk self-selection constraint is binding). Specifically:

1. High-risk firms get full coverage at premium pH .
2. Low-risk firms get coverage xL at premium pL such that

(a) The government has zero expected profits:

απL xL + ( − α)πH L = α pL + ( − α)pH . (9.1)

(b) The high-risk firms self-selection constraint is satisfied with equality:

u(w − pH ) = ( − πH )u(wg − pL ) + πH u(wb − pL + xL ) (9.2)

(Utility of CH equals expected utility of C L for high-risk firms.)
For each pH , we can solve the system of equations (9.1–9.2) for pL and xL . By

varying pH , we can trace out the entire efficiency frontier. In a similar way, we can
derive the frontier for the contracts where the low-risk firms get full coverage and the
high-risk firms get partial coverage. This slice of the efficiency frontier is plotted in
Figure 9.8 for the case where α = . (the solid line).

For comparison, the efficiency frontier without adverse selection is drawn. Observe
that the two frontiers coincide at the pooling contract, but there is a loss in welfare due
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Figure 9.8
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Efficiency frontiers with zero expected profits, for α = .. Solid line is frontier with adverse
selection, and dashed line is frontier without adverse selection.

to the self-selection constraints when we try to give different allocations to the two
types of firms.

Consider how the efficiency frontier changes when α is higher. The locus of utilities
for the solution to equations (9.1) and (9.2) are shown in Figure 9.9 for α = .. Here we
can observe something that was not apparent in Figure 9.8. The curve bends around,
which means that some of the solutions are not efficient. Here is an explanation. As
we increase the premiums for high-risk firms and redistribute expected wealth to low-
risk firms, the low-risk firms have to bear more risk so that high-risk firms do not
choose the low-risk contract. For high pH , the extra risk that low-risk firms must bear
outweighs the extra wealth they obtain in expected value. Then both low-risk and
high-risk firms are made worse off by the attempt to redistribute wealth from high-
risk firms. Hence, when calculating the true efficiency frontier, we have to check that
solutions to equations (9.1) and (9.2) are not dominated by other solutions to these
equations.

9.4.1 Competitive insurance markets with adverse selection

We don’t have to do much more work to figure out what the competitive outcome will
be when there are many (potential) insurance companies acting competitively. It will
be the actuarially fair, second-best menu, if there is such a thing.

We need to be precise about what we mean by a competitive equilibrium. We imag-
ine that there are many (potential) insurers. The market is in equilibrium when no
insurer can increase its (expected) profits by changing its contract offering, given that
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Figure 9.9
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Solid line is the locus of solutions to equations (9.1) and (9.2), which are the potential
points on the efficiency frontier for zero expected profits, for α = .. Not all points are
efficient. Dashed line is the efficiency frontier without adverse selection.

the remaining insurers do not change their offerings. In particular, no potential entrant
should be able to make a strictly positive expected profit by offering one or more con-
tracts, and all active insurers should be making zero or positive profits. This is a pure-
strategy Nash equilibrium in a simultaneous-move game in which the players are the
insurance companies and the strategies are contract offerings.

Proposition . Each contract in the competitive equilibrium is actuarially fair for the
designated type (and hence the equilibrium is separating).

Proof. Given any separating menu of contracts, you can always shift one type’s contract
a small amount and make that type strictly better off without violating the self-selection
constraints. E.g., for low-risk types, move their contract to the region down and to the
right of the contract that is bounded by the indifference curves through that types’
contract, and for high-risk firms move their contract into the similar region that is up
and to the left. Thus, if either type’s contract is not actuarially fair, a company can come
along and offer a similar contract that attracts all the firms’ of that type but no firms of
the other type, and that is still unfair, i.e., that generates a profit for the company. �

Proposition . The competitive equilibrium is (constrained) efficient.

Proof. If the current market menu is not constrained efficient, it is possible to come up
with a menu that makes all three groups better off (not just one of them). An entrant
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Figure 9.10
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The competitive equilibrium with adverse selection is {C L , CH }. CH is the intersection of
the high-risk fair-odds line with the ◦ line. C L is the intersection of the low-risk fair-odds
line with the high-risk firms’ indifference curve through CH . For comparison, {C L , CH } is
the competitive equilibrium without adverse selection.

can offer such a menu, attract all the firms, and make a positive profit. �

Using the two properties of the competitive equilibrium—actuarial fairness and
efficiency—we can calculate and illustrate graphically the equilibrium contracts. First
the high-risk contract: From fairness, we know that the high-risk firms are worse off
than under the revenue equivalent polling contract. Combining this with efficiency, we
know that the high-risk firms have full coverage. Hence, high-risk firms have coverage
L of a premium πH L. Now the low-risk contract:

• From fairness:
pL = πL xL (9.3)

• From efficiency, the high-risk self-selection constraint is binding:

u(wg − πH L) = ( − πH )u(wg − pL ) + πH u(wb − pL + xL ) (9.4)

(The left-hand side is a high-risk firm’s utility when it chooses CH . The right-hand
side is a high-risk firm’s expected utility when it chooses C L .)

Graphically, the low-risk allocation is the intersection of the low-risk firms’ fair-
odds line and the high-risk firms’ indifference curve through the high-risk firms’ al-
location. This is shown in Figure 9.10. Arithmetically, the low-risk firm’s contract
〈pL , xL〉 is the solution to equations (9.3) and (9.4). In our example, the high-risk
firms get coverage of $100,000 at a premium of $50,000, and they end up with $70,000
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for sure. The low-risk firms’ actuarially fair premium is pL = .xL , and so the high-risk
firms’ binding self-selection constraint, equation (9.4), becomes:

u() = .u( − .x) + .u( + .x)

/ = .( − .x)/ + .( + .x)/

The solution is XL = , . Then the high-risk firms’ utility is u(, ) = ,
and the low-risk firms’ utility is

.( − .())/ + .( + .())/ = 

There is one important caveat. The menu of contracts we have calculated is cer-
tainly the Pareto superior menu out of all actuarially fair menus, and hence is the only
candidate for an actuarially fair and efficient menu. However, it is possible that this
menu is Pareto dominated by some other menu in which the high-risk firms have lower
premiums and the low-risk firms have actuarially unfair insurance but are better off be-
cause they have more coverage. In fact, it may even be Pareto dominated by the pooling
contract that has zero expected profits for the insurance companies. Observe that the
actuarially fair, “efficient” menu we have found does not depend on the fraction α of
firms that are low risk. On the other hand, the zero-profit pooling contract does de-
pend on α. As α approaches 1, the premium for the pooling contracts approach the
actuarially fair premium for low-risk firms, and the low-risk firms are better off than
with the partial coverage they get in the actuarially fair menu. Hence, for large enough
value sof α, the actuarially fair, “efficient” menu we have calculated is not efficient at
all.

This is illustrated in Figure 9.11, which shows the solutions to equations (9.1) and
(9.2) for α = ., α = . and α ≈ . When α = ., the fair, second-best menu is effi-
cient. When α = ., the actuarially fair menu is not Pareto dominated by the pooling
contract, but it is Pareto dominated by an intermediate contract. When α ≈ , the fair,
second-best menu is Pareto dominated by the pooling contract. For example, this is
true when α = .:

Utilities low risk high risk
no insurance 305 244
fair, first-best 316 265

fair, second-best 310 265
pooling α = . 292 292
pooling α = . 311 311

What happens when the fair, self-selection menu is not efficient? There is no menu
that satisfies the conditions for an equilibrium that were derived above. Of course, the
world doesn’t stop turning as a result. This simply means that our model no longer
makes a prediction, and we need a better model. Several alternative models of com-
petition have been devised all of which are beyond the scope of this course.4 Some
models predict that the equilibrium is separating, but not necessarily actuarially fair

4. One technical extension to our model is to allow mixed strategies. Other models, unlike the one we
studied, allow firms to consider the long-term reactions of other firms to their contract offerings. One such
equilibrium concept is called the reactive equilibrium, and it predicts that the outcome is always separating.
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Figure 9.11
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The solid lines are the loci of utilities for potentially efficient contracts (solutions to equa-
tion (9.1) and (9.2)) when high-risk firms get full coverage, for α equal to ., . and ≈ .
For comparison, the dashed lines are portions of the efficient frontiers without adverse
selection. For α equal to . and ≈ , the menu of actuarially fair contracts that satisfies
equations (9.1) and (9.2) is not constrained efficient, and hence cannot be the competi-
tive equilibrium.

for each type of firm. What is important is that you understand that our sharp results
about the competitive equilibrium hold when there are not too few high-risk firms,
and that otherwise high-risk firms may have actuarially favorable insurance and low-
risk firms may have actuarially unfavorable insurance but more coverage than in the
actuarially fair menu.

Exercise 9.1. Consider the following problem of adverse selection in insurance mar-
kets. There are two types of people looking for automobile liability insurance, good
drivers and bad drivers. For simplicity, suppose the state’s torte law says that for any
accident, no matter what kind, the party at fault pays the other party $90,000. Bad
drivers have an accident at which they are at fault with probability 1/3. Good drivers
have an accident at which they are at fault with probability 1/10. The utility over money
for both types is u(m) = m /, and the initial wealth for both types is $, .

The market for insurance is perfectly competitive and there are no administrative
costs.

a. Suppose that the insurance companies can observe which people are high risk and
which are low risk. Describe the market equilibrium. (I.e., what kind of contract will
each type get?) Explain.
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b. What does it mean for there to be adverse selection in this problem? If there is
adverse selection, what would happen if the insurance companies offered the two con-
tracts you found in the previous part?

c. Suppose that there is adverse selection. What is the best menu of contracts (from
the insured’s point of view), with a distinct contract for each type of driver, such that
(i) each driver chooses his or her corresponding contract and (ii) each contract is ac-
tuarially fair for the designated type. (You can stop at the point where you have given
an equation that determines the key provision of the contract, or you can solve the
equation and give the exact contract.)

d. Explain the meaning of a menu of contracts and self-selection in the context of this
problem.

Exercise 9.2. Consider the following problem of adverse selection in insurance mar-
kets. There are two types of people looking for health insurance, high risk and low risk.
The insurance is to cover the cost of back surgery, which each type will have performed
no matter what, if the need arises. The operation costs $12,000. High risk people will
need the surgery over the year-long life of the policy with probability 1/2. Low risk
people will need it with probability 1/10. The fraction α of the population that is low
risk is /. The utility over money for both types is u(m) = m /, and the initial wealth
for both types is $,  (i.e., without insurance, they have $24,000 when they do not
need surgery, and they have $12,000 when they need surgery).

The market for insurance is perfectly competitive and there are no administrative
costs.

When answering the questions below, explain the steps you are taking in finding the
solution.

a. Suppose that the insurance companies can observe which people are high risk and
which are low risk. Describe the market equilibrium. (I.e., what type of contracts will
each type get?)

b. Now find the separating market equilibrium if the insurers cannot observe who is
high or low risk. You should specify the high-risk contract, and find the low-risk con-
tract as a solution to the self-selection constraint. (You will have to solve an equation
with square roots on both sides. You can solve it numerically, or you can solve it by
rearranging, squaring both sides, rearranging, squaring both sides again, rearranging,
and solving the resulting quadratic equation.)

c. Show that if the contracts you found above are in the market, then the fair pooling
contract does not attract all the consumers.

d. Let α be the fraction of people in the market that are low-risk. We set this to 1/2 be-
fore, but now we want to treat it as a parameter. How does your answer to the previous
problem depend on α?
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Figure 9.12
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The menu {C L , CH } is such that both types of firms are indifferent between their con-
tracts and no insurance, and the low-risk firms get positive coverage. However, {C L , CH }
violates the high-risk firms’ self-selection constraint.

9.5 Monopolistic screening

In the competitive equilibrium, the insurance companies get zero expected profits, and
the insured firms get all the gains from trade. Our characterization of the efficient
menus is also useful for understanding the outcomes of other market structures.

For example, suppose that there is a single model insurance company that acts as
a monopolist to maximize its expected profits. The menu the monopolist chooses will
be constrained-efficient, but the monopolist will drive the customers down to their
reservation utility—to the extent possible—in order to extract the greatest surplus.

The outside option for the firms is to get no insurance. If the monopolist could
observe each firms type, it would provide full coverage to all firms at premium that
kept firms with their certainty equivalent (plus perhaps a penny). The monopolist gets
each firm’s risk premium in expected profits. Each firm is roughly indifference between
accepting the monopolist’s insurance or opting for no insurance.

However, this menu does not satisfy the self-selection constraints, because the firms
get full coverage at different premia. In fact, there is no menu that satisfies the high-
risk firms’ self-selection constraint in which both firms are indifferent between their
insurance and no insurance and in which the low-risk firms get positive coverage. This
is illustrated in Figure 9.12. The single-crossing properties implies that the portion of
the low-risk firms’ indifference curve through the no-insurance allocation lies above
the high-risk firms’ indifference curve through this allocation.
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Figure 9.13
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Menus of contracts that satisfy the low-risk participation constraint and the high-risk
self-selection constraints with equality. Moving from menu {C L

 , CH
 } to {C L

 , CH
 }, the

monopolist extracts a greater risk premium from the low-risk firms but the high-risk firms
get larger informational rents.

The monopolist can opt to provide no insurance to low-risk firms and to give the
high-risk firms their certainty equivalent, or it can give more wealth to the high-risk
firms so that it can provide partial coverage to the low-risk firms. In the second type of
menu, the high-risk firms are better off than without insurance, and are better off than
when the monopolist can observe their type. Such surplus due to private information
is called informational rents.

Menus of this type are shown in Figure 9.13. Given CH , the low-risk contract C L

that maximizes the monopolist’s expected wealth is the one for which the high-risk
firms’ self-selection constraint and the low-risk firms’ participation constraint is bind-
ing. That is, it lies at the intersection of the high-risk firms’ indifference curve through
CH and the low-risk firms’ indifference curve through C L .

As the monopolist increases the high-risk firms wealth, starting at the high-risk
firms’ certainty equivalent and ranging up to the low-risk firms’ certainty equivalent,
the coverage of the low-risk firms’ contract increases up to full coverage. The expected
profits form the high-risk firms’ contract decreases and may even be negative, while
the expected profits from the low-risk firms’ contract increases. Which of these menus
is the best for the monopolist depends on the fraction α of firms that are low risk.
When α is small, it can be optimal to only insure the high-risk firms. The larger is
α, the more coverage the low-risk firms get. However, as long as the low-risk firms
have differentiable utility, full-coverage (pooling) is never optimal for the monopolist
(if α < ). Because of local risk neutrality, decreasing coverage for the low-risk firms by
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a small amount has a negligible effect on the profits from the low-risk firms’ contract,
but it allows the monopolist to increase the premiums for high-risk firms by a non-
negligible amount.

Let’s conclude by writing the monopolist’s maximization problem. The monopolist
chooses two contracts, C L and CH , to maximize its expected profits, subject to four
constraints: the low and high-risk firms’ self-selection and participation constraints.
However, we have shown, using the single-crossing property of the indifference curves
along with the properties of efficient menus, that only the high-risk firms’ self-selection
constraint and the low-risk firms’ participation constraint are binding. Furthermore,
the high-risk firms get full coverage. Hence, the monopolist’s maximization problem
is

max
pL ,xL ,pH

α(pL − πL xL ) + ( − α)(pH − πH L)

subject to: u(wg − pH ) = ( − πH )u(wg − pL ) + πH u(wb − pL + xL )
( − πL )u(wg − pL ) + πLu(wg − pL + xL ) = ( − πL )u(wg ) + πLu(wb ).
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Signaling

10.1 The difference between screening and signaling

10.2 Signaling in labor markets
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Chapter 11

Long-term versus short-term
contracting

11.1 Ex-ante versus ex-post efficiency

One feasible social outcome is Pareto superior to another feasible social outcome if ev-
ery involved party weakly prefers the former and some party strictly prefers it. A social
outcome is Pareto optimal if there is no Pareto superior outcome. Pareto optimality and
Pareto superiority are weak normative criteria; it is hard to argue against them. Once
consequence is that they are not complete. Most pairs of social outcomes cannot be
compared this way, because there is no unanimity among the involved parties about
which is better.

Another term for Pareto optimal is Pareto efficient, or just plain efficient if you are
talking among economists.

In applying these Pareto criteria, one must decide what is meant by an outcome,
when an outcome is feasible, who the involved parties are, and what preferences over
outcomes are. Economists take preferences as given, as if they were biologically inher-
ited. This is a weak point in economic theory, but there is one way in which changing
preferences sneak in. Because preferences over uncertain prospects (state-dependent
plans) depend on beliefs, the revelation of information can change preferences. For
example, your demand for health insurance will change drastically after you learn that
you are or are not sick.

The Pareto criterion can still be applied when beliefs, and hence preferences, change
over time due to new information. However, one has to specify what preferences are be-
ing used when applying the Pareto criterion. In fact, it is interesting to compare Pareto
optimality before and after the revelation of information. The term ex-ante means be-
fore information is observed, and ex-post means after information is observed. Thus,
one has the terms ex-ante and ex-post efficiency or Pareto optimality.

Here an example. Suppose there are two farmers living on two neighboring islands.
One grows red potatoes and the other grows white potatoes. These potatoes are perfect
substitutes and there are no other goods, and hence there are no reasons to trades.

But now suppose that the farmers learn that one (and only one) of their crops will
be wiped out by a blight. Each farmer will be hit with equal probability. The farmers
then might sign a state-contingent contract which specifies potato transfers from one
farmer to the other, depending on who gets hit by the blight. Such a contract, together
with the state-dependent endowment of potatoes (the state here is which farmers gets
the blight), determine the state-dependent allocations of potatoes. The farmers have
preferences over these state-dependent allocations, and hence over contracts, that de-
pend on their information and risk preferences.

Economics of Uncertainty and Information ©2004 Timothy Van Zandt
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Here is what the time line looks like:

Contract Blight Transfer Consume

Ex-post means after the farmers know who is hit by the blight, and ex-ante means
before they know this. In this simple example, any allocation of potatoes is ex-post effi-
cient: The only way to make the farmer who is hit by the blight better off is to give her
some of the other farmer’s potatoes, but this will make that farmer worse off, since he
know his potatoes are OK.

Ex-ante, however, efficient contracts involve some sharing of risk. In fact, if the
farmers are risk averse, then any ex-ante efficient contract will have no risk—it will
specify simply what fraction of good potatoes each farmer gets. (This is possible be-
cause there is no aggregate risk, i.e., the total amount of potatoes in the economy is not
random.) For example, the farmers might agree to divide the good potatoes evenly.

Information can have “negative” social value (it can make everyone worse off), in
ex-ante terms, because it destroys the possibility of insuring against risk when it is
observed before contracts can be signed. If contracting takes place before the farmers
know who is hit by the blight:

Observe who gets blight

Contract Blight Transfer Consume

then presumably the farmers would agree on an ex-ante efficient contract. However, if
the farmers learn who gets hit before they are able to contract:

Observe who gets blight

Contract Blight Transfer Consume

then they will not agree to any transfer at all.. (The same breakdown of trade will occur
if only one party knows who gets hit by the blight, as long as the other party knows she
knows.) Although this outcome is ex-post efficient, it is not ex-ante efficient.

Before considering an application of ex-ante and ex-post efficiency, let’s look at
the definitions a little more formally. We need the Savage framework for uncertainty
and information. This begins with a set S of states of the world, representing possible
descriptions of the world. That there is uncertainty means that it is not known what
the true state is. Observing formation might mean that one observes exactly what the
true state is, or it might mean only that one is able to exclude some probabilities, e.g.,
one learns not the entire weather forecast, but only whether it is going to be sunny. For
simplicity, we will only consider the case where the state of the world is fully revealed.

It will be more convenient to use state-dependent preferences. Hence, an outcome
is not a description of everything that matters to each decision maker, but perhaps only
those factors that are under the control of the decision makers or some other authority
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that could intervene, such as a government. Let Z be the set of feasible outcomes. A
contingent outcome is a function f : S → Z. This is called an act in the Savage model,
but we will not use this term because preferences over outcomes are not necessarily
state independent. For person i there is a probability measure π i on S and a utility
function u i : Z × S → R such that

f �i g ⇐⇒ ∑
s∈S

π i (s)u i ( f (s), s) ≥ ∑
s∈S

π i (s)u i (g (s), s)

u(z , s) is the utility of outcome z in state s, f (s) is the outcome in state s for the con-
tingent outcome f , and u( f (s), s) is thus the utility in state s for f . Then we would
say that f is preferred to g if only only if the expected utility of f is greater than the
expected utility of g .

Suppose that everyone observes that the true state is s. Then each person’s pref-
erences over outcomes are represented by the utility function u i (·, s). An outcome z
is ex-post efficient in state s if it is efficient for these utilities. i.e., if there is no other
feasible outcome y such that

u i (y , s) ≥ u i (z , s)

for all i , and with strict inequality for some i . A contingent outcome f is said to be
ex-post efficient if f (s) is ex-post efficient for each s.

On the other hand, a contingent outcome is ex-ante efficient if there is no other
Pareto superior contingent outcome in terms of expected utility, i.e., if there is no other
feasible contingent outcome g such that

∑
s∈S

π i (s)u i (g (s), s) ≥ ∑
s∈S

π i (s)u i ( f (s), s)

for each i , and with strict inequality for some i .
Here is an important observation:

A contingent outcome is ex-post efficient if it is ex-ante efficient.

In other words, ex-post efficiency is a necessary condition of ex-ante efficiency. For
if a contingent outcome is not ex-post efficient, there is another contingent outcome
that gives the same outcome or an ex-post Pareto superior outcome in each state, and
hence the latter contingent outcome is ex-ante preferred by each individual.

Note that the converse is not true. I.e., a contingent outcome can be ex-post ef-
ficient, but not ex-ante efficient. The potato example above showed this. Whenever
there is a single good (e.g., “money”) and hence no ex-post gains from trade, every
allocation is ex-post efficient. Due to risk, however, not every contingent outcome is
ex-ante efficient.

11.2 Long-term and short-term insurance contracts
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