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Chapter 2 The Supply of Insurance

1 Introduction

In modelling the market supply of goods in general, we proceed by first developing

a theory of the firm, and then analysing its supply behaviour. The key underlying

relationship is the production function, showing how the the output quantities that

can feasibly be produced vary with the input quantities used. The general properties

of this function are important because they determine the nature of the firm’s costs, in

particular how they vary with output. The production function and its properties are

treated in a very general way. As economists we are not interested in the details of the

engineering or technological relationships involved in producing some specific good, but

only in their broad characteristics - the behaviour of marginal productivity as input

quantities vary, the nature of the returns to scale - that allow us to put restrictions on

the form of the firm’s cost function.

In most of the economics literature on insurance markets, a much simpler approach

is taken. It is just assumed that the market is “competitive”, the “production costs”

of insurance are zero, and as a result there is a perfectly elastic supply of insurance

cover at a fair premium. This approach can be justified when the purpose of the model

is to analyse specific issues that would only be unnecessarily complicated by a more

complete specification of the supply side of the market. Later in this book for example
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we shall see this in the analysis of the implications of information asymmetries for the

existence and optimality of insurance market equilibrium. It will not suffice however

when we are concerned with the general analysis of insurance markets. Therefore in

this chapter we develop a theory of the insurance firm and analyse its supply behaviour.

Our first concern will be with the “technology” of insurance. This has two aspects.

On the one hand, there are the activities involved in physically “producing” insurance:

drawing up and selling new insurance contracts, administering the stock of existing

contracts, processing claims, estimating loss probabilities, calculating premiums, and

administering the overall business. The costs involved in these activities are often

referred to as “transactions costs”, but since they clearly extend beyond what in the

economics literature are normally referred to as transactions costs, we will call them

insurance costs. We would generally expect them to increase with the “output”

of insurance, the amount of cover sold, though there may well be a fixed overhead

component independent of this.

The second aspect of insurance technology is conceptual rather than physical, and

concerns the pooling and spreading of risk. When an insurer enters into insurance

contracts with a number of distinct individuals, the probability distribution of the

aggregate losses they suffer will in general differ from the loss distribution facing any

one individual. We are interested in the nature of this aggregate loss distribution,

or, more precisely, the distribution of claims on the insurer to which it gives rise. In

particular, we want to establish its properties as the number of contracts sold becomes
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large.This is the issue of risk pooling. In addition, the insurer will typically not be a

single individual, but rather a group of individuals. Each member of this group may

face unlimited liability, in the sense that he will be liable to meet insurance losses to

the full extent of his wealth; or limited liability, where his possible loss is limited to

the extent of his shareholding. In the former case we refer to an insurance syndicate,

in the latter to an insurance company or firm. In each case the insurance losses are

being spread over a number of individuals, and we are interested in the question of

how this affects the premium that would be set, given that the individuals may be risk

averse.

Finally, a very important aspect of an insurer’s operations are its investment activ-

ities. These arise in two ways. As we shall see, the insurer will have to hold reserves

against the possibility that the aggregate value of loss claims will exceed its premium

income. These will be invested in assets that yield a return. Secondly, since under

every insurance contract premium revenue is collected in advance of the payout of any

corresponding claim, this provides a flow of investible funds. For both these reasons

large insurers are also major financial institutions. It is therefore of interest to examine

how these two sides of the business, insurance and investment, interact.

In the next two sections we examine in a general way the economics of risk pooling

and risk spreading in insurance markets, assuming that insurance costs are zero. We

then go on to consider the implications of introducing insurance costs for an insurer in a

competitive market, using a discrete version of a model first proposed by Artur Raviv.
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In the following section we consider the implications of limited liabilty of insurers, and

discuss the issue of choice of insurance reserves, which is closely bound up with the

question of the regulation of insurance markets. In all this, we consider only pure

insurance, and ignore the issues raised by the insurer’s investment activities. In the

concluding section of the chapter, we devekop a model that incorporates both insurance

and investment activities.

2 Risk Pooling

We assume that the insurer enters into insurance contracts with n individuals, and we

make the further assumption that the distribution of claims costs under each contract

is identical, and independent across contracts. This assumption of identically and

independently distributed (i.i.d.) risks is not essential for determining the aggre-

gate claims distribution, but is very helpful in greatly simplifying the technicalities

involved, while losing little of interest to the economist. Thus each contract is assumed

to have the same probability distribution distribution of cover, and therefore of loss

claims, C̃i, with mean µ and variance σ2, both finite, and with zero covariance between

any pair of values Ci, Cj, i, j = 1, .., n, i 6= j. It follows from the standard properties of

the sum of i.i.d. random variables that C̃n =
∑n

i=1 C̃i, is also a random variable with

mean nµ.We find its variance as

E[(
n∑

i=1

C̃i − nµ)2] = E[{
n∑

i=1

(C̃i − µ)}2] (1)
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and, since the covariances between the C̃i are all zero

E[{
n∑

i=1

(C̃i − µ)}2] =
n∑

i=1

E[(C̃i − µ)2] = nσ2 (2)

Note that the variance of the total claims cost increases linearly with n,while its stan-

dard deviation,
√

nσ, is strictly concave in n.

One immediate implication of this is that if the insurer sets the premium on each

contract equal to the expected value of cover or claims cost µ, and insurance costs

are zero, it will just break even in expected value, since its total premium revenue

nµ will equal the expected value of claims costs. This is the reason for calling µ the

fair premium. However, it must be emphasised that any one realisation of C̃n, that

is, actual aggregate claims costs in any one period, may be larger or smaller than nµ,

no matter how large the number of contracts sold, since the variance nσ2 is always

positive and increases with n. If the insurer is to avoid insolvency, i.e. the situation

in which claims costs exceed the funds available to meet them, it will have to carry

what are called technical or insurance reserves. Now, it is reasonable to assume that

each contract has a maximum cover Cmax, and so there is a maximum aggregate claims

cost nCmax. Thus, in principle, if the insurer sets a premium amount P per contract

and also carries reserves (ignoring for the moment investment income and associated

risk) Rmax = n(Cmax − P ), it will have a zero probability of insolvency. In practice,

however, the probability that actual claims costs will be in the region of nCmax is

typically extremely small, while, for a large insurer, attempting to raise a capital of

Rmax could be extremely costly. Consequently, insurers proceed by choosing a so-called
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ruin probability, which we denote by ρ, and, given the distribution of aggregate

claims costs, they then choose a level of reserves R(ρ) = Cρ − nP, where Cρ satisfies

Pr[C̃n > Cρ] = ρ (3)

That is, reserves are set at a level such that the probability is ρ that actual claims costs

will exceed premium revenue plus reserves (again ignoring investment income) and the

insurer will be insolvent.

Figure 1 illustrates, for the case in which the insurer sets the fair premium, P = µ.

The aggregate loss claims distribution is bounded below by zero and above by nCmax,

and Cρ is the value of aggregate claims such that with probability ρ the insurer will be

insolvent. For a given value of ρ, the value Cρ will increase with the number of contracts

n.Since µ is independent of n, this means that the value of the required reserves R(ρ)

must also increase with n.

Figure 1 about here

It is clearly of interest to ask how the ruin probability ρ is determined. It will result

from a solution to the problem of the optimal trade-off between the costs of insolvency

and the cost of holding reserves. We shall explore this problem in more detail in section

X below. First, we consider the implications of the Law of Large Numbers for the value

of the loss and insurance reserves per contract.

Consider a particular realisation C1, C2, ..., Cn of the claims under the n individual

contracts. We can regard this as a random sample from a distribution with mean µ and
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variance σ2,both finite. Let C̄n denote the sample mean, or average loss per contract,

i.e. C̄n = 1
n

∑n
i=1 Ci. Then the version of the Law of Large Numbers (there is more

than one) relevant for present purposes says that for any ε > 0,

lim
n→∞

Pr[
∣∣∣C̄n − µ

∣∣∣ < ε] = 1 (4)

In words, as n becomes increasingly large, this sample mean, the average loss claim

per contract, will be arbitrarily close to the value µ with probability approaching 1.

Put loosely, this says that for a sufficiently large number of insurance contracts, it is

virtually certain that the loss per contract is just about equal to µ, the mean of the

individual loss distribution. As the number of contracts increases, so the probability

that the loss per contract lies outside an arbitrarily small interval around µ goes to

zero.

It is also useful to look at the variance of C̄n. This is given by

E[(
1

n

n∑
i=1

Ci − µ)2] = E[
1

n2
(

n∑
i=1

Ci − nµ)2] =
1

n2
E[(

n∑
i=1

Ci − nµ)2] =
nσ2

n2
=

σ2

n
(5)

Thus the variance of the realised loss per contract about the mean of the individual

loss distribution goes to zero as n goes to infinity.

Now, in the Law of Large Numbers statement in (.) set ε = σ2/n, so that we have

lim
n→∞

Pr[
∣∣∣C̄n − µ

∣∣∣ <
σ2

n
] = 1 (6)

This suggests that as the number of individual insurance contracts sold by an insurer

becomes very large, the risk that the claims cost per contract will exceed the fair
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premium becomes vanishingly small. We can interpret this as a type of economy of

scale: although the variance of aggregate claims increases with n, so the insurance

reserves will have to increase in absolute amount, the required reserve per contract

tends toward zero: required reserves increase less than proportionately with size of the

insurer, measured in terms of the number of individual insurance contracts.

3 Risk Spreading

Suppose now that the insurer is either a syndicate with N members or a company with

N shareholders. It will simplify the analysis without losing much of economic interest

if we assume that these individuals are all identical and share the net income from the

insurance business equally, so that each receives a share s = 1/N of this net income.

The main difference between these two types of insurer in the present context is that

if it is a syndicate, the total wealth of the members will have to be at least equal

to the insurance reserve implied by the chosen ruin probability, while for a company,

the equity capital would have to be at least this amount. That said, we will ignore

the distinction for the time being, by assuming it is costless to hold reserves. We also

assume that the individuals are risk averse. The question of interest is: what, if any, are

the implications of increasing the number of individuals N in the syndicate or company,

i.e of spreading the risky income over a larger number of individuals? The intuition

would be that this should in some sense reduce the riskiness of the individual incomes

and therefore reduce the risk premium that they would demand as a condition of taking
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a share in the insurance, thus reducing the insurance premium. Again we would have

a type of economy of scale. Support for this intuition can be gained by applying the

discussion of the Arrow-Pratt measure of absolute risk aversion given in the Appendix

to the previous chapter. There we saw that we can derive the approximation

r ≈ −1

2

u
′′
(y0)

u′(y0)
σ2

z ≈
1

2
A(y0)σ

2
z (7)

where r is the individual’s risk premium, or amount he would have to be paid to

compensate him for accepting a small risky income z with zero mean and variance σ2
z ,

y0 is his income in the absence of this risk, and A(y0) is his Arrow-Pratt index of risk

aversion. Now let this risky income z consist of the share s = 1/N in a given aggregate

risky income Z̃, which has mean zero and variance σ2
Z . Then we have

σ2
z = E[(

Z̃

N
)2] =

σ2
Z

N2
(8)

Then clearly limN→∞ r = 0. For a sufficiently large number of individuals, each becomes

essentially risk neutral. More to the point, if we consider Nr, the sum of the risk premia

Nr ≈ N

2
A(y0)σ

2
z =

1

2
A(y0)

σ2
Z

N
(9)

it is clear that the total cost of risk bearing to the syndicate as a whole, Nr, goes to

zero as the syndicate size grows, so that for sufficiently large N the risk aversion of the

individuals can be ignored, and the insurer can be treated as risk neutral. Intuitively,

the individual risk premia fall at a rate determined by N2, while the sum of risk premia

grows at a rate determined by N, and so overall this sum goes to zero as N grows. We

now consider a more rigorous and general formalisation of this intuition.
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3.1 The Arrow-Lind Theorem

This theorem has many applications over and beyond insurance markets, but is also of

central importance here. It confirms the intuitive idea that the larger the number of

syndicate members who share in a given distribution of income from a risky insurance

business, the smaller the cost of the risk associated with that business, even though

the individual syndicate members are risk averse. More importantly, it makes clear a

necessary condition for this result, namely that the covariance between the member’s

income from the insurance business, and his marginal utility of income if he does not

share in this business, be zero. Thus let Z̃ be the aggregate income from the insurance

business, and E[Z̃] its expected value. There are N members of the syndicate or

shareholders of the company, and each receives a share s = 1/N of the random income

Z̃. Assume each member has an identical risk averse utility function u(.) and non-

insurance income y,which may be a random variable. The key assumption is that

Cov[Z̃, u
′
(y)] = 0 (which of course certainly holds if y is certain).

Now, define the certain amount of income r to satisfy

E[u(y + sZ̃ + r) = E[u(y)] (10)

Note that this is an identity in r, and implicitly defines r as a function of s. We could

think of r as the amount the individual would require to be paid to induce him to

participate in the insurance business. If this is negative, it is the amount he would

pay for a share in the business. It is obvious that as N → ∞, i.e. as s → 0, we have

r → 0. For example, a risk averse decision taker with a certain income would always be
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indifferent about accepting a fair bet if it is small enough - to the first order expected

utility would be unchanged. What the theorem shows, however, is the somewhat less

obvious fact that, on the given assumptions, the sum Nr(s) = r(s)/s → −E[Z̃] as

N → ∞. We can interpret this as saying that for sufficiently large N, the aggregate

market value of the insurance business can be taken as the expected value of its net

income - we can treat the insurer as risk neutral.We now show this.

First, since the RHS of (10) is independent of s, we can apply the Implicit Function

Theorem to obtain

dr

ds
= −E[u

′
(y + sZ̃ + r)Z̃]

E[u′(y + sZ̃ + r)]
(11)

Now consider

lim
s→0

r(s)

s
(12)

Since both numerator and denominator go to zero, we apply l’Hôpital’s Rule

lim
s→0

r(s)

s
= lim

s→0

dr(s)/ds

ds/ds
(13)

= lim
s→0

−E[u
′
(y + sZ̃ + r)Z̃]

E[u′(y + sZ̃ + r)]
(14)

= −E[u
′
(y)Z̃]

E[u′(y)]
(15)

=
−E[u

′
(y)]E[Z̃]− Cov(u

′
(y), Z̃)

E[u′(y)]
(16)

Given the assumption Cov(u
′
(y), Z̃) = 0 we have

lim
s→0

r(s)

s
= −E[Z̃] (17)

Thus, the aggregate value of the insurance business to the participants is equal to

its expected value, with no adjustment for risk, as long as the uncertain net income
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has a zero covariance with the individuals’ marginal utility of income from outside

the business. Note that if this covariance were positive, implying, since u
′′

< 0, a

negative covariance between y and Z̃, the aggregate value of the insurance business to

its shareholders would exceed its expected value, and conversely if the covariance were

negative. In the former case, the insurance business offers the shareholders a way of

diversifying their asset portfolio.

.

4 Insurance Costs and the Raviv model

The previous two sections have discussed conditions under which an insurer may act

as if it were risk averse in setting a fair premium for cover: if the number of insurance

contracts with i.i.d risks is sufficiently large, then the cost per contract of holding

reserves is close enough to zero to be ignored; and if the number of syndicate mem-

bers or company shareholders is sufficiently large, and the zero covariance condition is

met, then their individual risk aversion can be ignored and the insurer treated as risk

neutral. All this however ignored insurance costs. We now analyse the implications of

introducing these costs for an insurer supplying insurance in a perfectly competitive

market. To focus the analysis on the effect of insurance costs, we assume

• insurance buyers are identical and their relevant characteristics - utility function,

income, loss distribution - are fully known to the insurer
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• the insurer can be treated as risk neutral

• we can ignore the cost of reserves in pricing individual insurance contracts.

The loss distribution is {0, L1, L2, ..., LS}, with corresponding probabilities {π0, π1, π2, ..., πS},

all positive, and with 0 < L1 < L2 < ... < LS. The premium (amount) is P, and so the

insurance buyer’s incomes are

y0 = y − P (18)

ys = y − P − Ls + Cs s = 1, .., S (19)

where Cs ≥ 0 is cover in state s. The insurer’s profits on any one contract in the

respective states are

x0 = P − F (20)

xs = P − Cs −K(Cs) s = 1, .., S (21)

where the insurance cost function K(Cs) has K
′
(.) ≥ 0, K

′′
(.) ≥ 0, and K(0) =

F ≥ 0, a fixed cost. Note that this cost function relates to one individual insurance

contract. In effect the model is assuming that the cost of having n contracts is just n

times the cost of one contract.

We use the assumption that the insurance market is perfectly competitive in formu-

lating the problem of the insurer’s choice of an optimal contract. Perfect competition

implies two things:

• the insurer will make zero profits in expected value,
∑S

s=0 πsxs = 0, since oth-
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erwise entry or exit of risk neutral insurers will take place. In other words, the

contract we derive is a long run equilibrium contract

• this equilibrium contract must also maximise the expected utility ū =
∑S

s=0 πsu(ys)

of the insurance buyer since, if not, a competitior could offer a superior contract

and compete away the business

We state and discuss the main results before deriving them formally. From the anal-

ysis of insurance demand in the previous chapter we know that a buyer will choose

full cover if offered a fair premium, while otherwise he prefers a contract with a de-

ductible over all other types of contract with the same expected cost to the insurer.

The existence of insurance costs suggests that a fair premium will not be feasible, and

thus, given the competitive market assumption, contracts with a deductible are likely

to make an appearance. This is what we find. With positive marginal costs K
′
(.) > 0,

we find that the optimal contract will give partial cover, and is likely to involve a

deductible (if the loss distribution were continuous on [0, LS] it would be certain to).

We also obtain two further interesting results. First, if marginal costs are increasing,

K
′′
(.) > 0, then the optimal contract involves coinsurance above a deductible, or an in-

creasing gap between loss and cover, whereas if marginal costs are constant, K
′′
(.) = 0,

there is simply a deductible. Secondly, if marginal costs are zero, so that the insurance

costs take the form of a fixed cost per contract, K(.) = F > 0, there is full cover,

implying that the insurer offers a premium P = F +
∑S

s=1 πsCs. Thus at the margin

the premium is fair, inducing the buyer to choose full cover, and the insurer covers its
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costs by making a lump sum charge in addition (this is known as a two-part tariff).

Figure 2 gives a summary illustration of these results.

Figure 2 about here

The assumption that the insurance market is perfectly competitive implies that the

optimal insurance contract is given by the solution to the following problem

max
P,Cs

ū =
S∑

s=0

πsu(ys) (22)

s.t. P = π0F +
S∑

s=1

πs[Cs + K(Cs)] (23)

Cs ≥ 0 s = 1, 2, ..., S (24)

The Lagrange function is

L =
S∑

s=0

πsu(ys) + λ[P − π0F −
S∑

s=1

πs(Cs + K(Cs)] (25)

The first order conditions are

∂L

∂Cs

= πsu
′
(y∗s)− λ∗πs[1 + K

′
(q∗s)] ≤ 0 C∗

s ≥ 0 C∗
s

∂L

∂Cs

= 0 (26)

∂L

∂P
= −[π0u

′
(y∗0) +

S∑
s=1

πsu
′
(y∗s)] + λ∗ = 0 (27)

∂L

∂λ
= P ∗ − π0F −

S∑
s=1

πs[C
∗
s + K(C∗

s )] = 0 (28)

Note, we have assumed P ∗ > 0, which in turn requires that at least one C∗
s > 0,

otherwise the problem is trivial. We now establish the main results.

It is first useful to prove that if cover is positive in state s, it must be positive in all

higher loss states s + 1, ..., S
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Proposition 1: If C∗
s > 0, then C∗

s+t > 0, for all t = 1, 2, ..., S − s

Proof: Suppose to the contrary that C∗
s > 0, and C∗

s+1 = 0. Then the first order

conditions give

u
′
(y∗s)− λ∗[1 + K

′
(C∗

s )] = 0 (29)

u
′
(y∗s+1)− λ∗[1 + K

′
(0)] ≤ 0 (30)

This implies (since K
′′
(.) ≥ 0)

u
′
(y∗s) = λ∗[1 + K

′
(C∗

s )] ≥ λ∗[1 + K
′
(0)] ≥ u

′
(y∗s+1) (31)

But this implies (given u
′′

< 0)

y∗s = y − P ∗ − Ls + C∗
s ≤ y − P ∗ − Ls+1 = y∗s+1 (32)

But this cannot be true if Ls < Ls+1 and C∗
s > 0. Thus we have a contradiction. The

argument can then be repeated for t = 2, .., S − s.

We now show that zero marginal costs imply full cover.

Proposition 2. There is full cover in every loss state if K
′
(.) = 0

Proof: Set K
′
(.) = 0 in the above first order conditions. We first show that cover

is positive in all loss states. Suppose not. In the light of Proposition 1, this must

mean that cover is zero for loss states 1, .., t− 1, and positive for states t, ...S, for any

t between 1 and S. Note that we must have, since u
′′

< 0,

u
′
(y∗0) < u

′
(y∗1) < ... < u

′
(y∗t−1) ≤ λ∗ (33)
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while in the states where cover is positive

u
′
(y∗s) = λ∗ s = t, .., S (34)

This implies that incomes are equal across these loss states

y − P ∗ − Lt + C∗
t = ... = y − P ∗ − LS + C∗

S (35)

Denote this common income by y∗. Substituting in the second condition gives

u
′
(y∗)[1−

S∑
s=t

πs] = π0u
′
(y∗0) +

t−1∑
s=1

πsu
′
(y∗s) (36)

But since

[1−
S∑

s=t

πs] = π0 +
t−1∑
s=1

πs (37)

we can write this equation as

π0[u
′
(y∗0)− u

′
(y∗)] +

t−1∑
s=1

πs[u
′
(y∗s)− u

′
(y∗)] = 0 (38)

which in the light of (33) and (34) cannot be true. Thus we have a contradiction and

cover must be positive in all loss states, implying that t = 1.Using this in (36) then

gives

(1−
S∑

s=1

πs)u
′
(y∗) = π0u

′
(y∗0) (39)

But since (1−∑S
s=1 πs) = π0, this implies y∗0 = y − P ∗ = y − P ∗ − Ls + C∗

s = y∗. But

this can only hold if C∗
s = Ls. Thus we have full cover.

Note that if marginal costs are zero but there is a fixed cost F, the first order condition

(28) gives the form of the premium. We now prove a central result:
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Proposition 3: If marginal costs are positive and constant, optimal insurance takes

the form of full cover above a deductible, D > 0, or more precisely

C∗
s = max(0, Ls −D) (40)

Proof: Let cover be positive in states s = t, ..., S. Denoting the constant marginal costs

by K
′
, condition (26) becomes

u
′
(y∗s) = λ∗[1 + K

′
] s = t, ..., S (41)

This implies that

y − P ∗ − Lt + C∗
t = y − P ∗ − Lt+1 + C∗

t+2 = .... = y − P ∗ − LS + C∗
S (42)

or

Lt − C∗
t = Lt+1 − C∗

t+1 = .... = LS − C∗
S ≡ D (43)

We call this common difference the deductible D. Thus we have C∗
s = Ls − D. It is

easy to show D > 0, and this is left as an exercise.

However, cover need not be positive in all states, and it is interesting to see why.

Thus suppose C∗
s = 0, while C∗

s+1 > 0, .., C∗
S > 0. The conditions then become

u
′
(y∗s) ≤ λ∗[1 + C

′
] (44)

u
′
(y∗t ) = λ∗[1 + C

′
] t = s + 1, ..., S (45)

Just as before, we can show that Lt − C∗
t = ... = LS − C∗

S, and we again call this

difference the deductible. These conditions now imply

u
′
(y∗s) ≤ u

′
(y∗s+1) (46)
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and therefore

y − P ∗ − Ls ≥ y − P ∗ − Ls+1 + C∗
s+1 (47)

or

Ls ≤ Ls+1 − C∗
s+1 = D (48)

Thus there is no cover in loss state s (and therefore in all lower loss states) because

the loss is no bigger than the optimal deductible.

Proposition 4: if marginal costs are positive and increasing there is coinsurance above

a deductible.

Proof: We now have that K
′′
(.) > 0. Let cover be positive in loss states s = t, ..., S.

Then the conditions become

u
′
(y∗s) = λ∗[1 + K

′
(C∗

s )] s = t, ..., S (49)

Consider now the logical possibilities:

(i) y∗s stays constant as Ls increases through s = t, .., S, as would be the case with

a deductible. In that case u
′
(y∗s) would stay constant while K

′
(C∗

s ) increases, because

C∗
s must increase. Then the condition cannot be satisfied, and so we rule this case out.

(ii) y∗s increases as Ls increases. In that case u
′
(y∗s) would decrease while K

′
(C∗

s )

increases, because C∗
s must increase, thus again we can rule this case out

(iii) y∗s falls as Ls increases. In that case u
′
(y∗s) would increase. Provided C∗

s also

increases, K
′
(C∗

s ) will increase, so this case, and only this case, is consistent with the
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conditions.

Thus we have

y − P ∗ − Lt + C∗
t > y − P ∗ − Lt+1 + C∗

t+1 > ... > y − P ∗ − LS + C∗
S (50)

implying

L1 − C∗
t < Lt+1 − C∗

t+1 < ... < LS − C∗
S (51)

but also

C∗
t < C∗

t+1 < ... < C∗
S (52)

This then is the case of an ”increasing deductible”, or, if we define D ≡ Lt − C∗
t , as

coinsurance above a deductible.

5 Limited Liability and Insurance Reserves

Under limited liability, a shareholder is liable for the debts of a company only up to

the value of his shareholding. As we shall now see in a simple example, this may

create an incentive for an insurer to provide insufficient reserves to cover loss claims,

which in turn can be used as an argument for the regulation of insurance markets by

a public agency. The example shows that given limited liability and an extreme form

of asymmetric information, it could be in an insurer’s interest to run a higher risk of

insolvency than is desirable from the policyholder’s point of view.
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Consider an individual who faces a 10% chance of a loss of £1,000. The expected

value of loss is £100, but because she is risk-averse, we assume she is prepared to pay

a premium of £150 in return for full compensation in the event of loss. A risk-neutral

insurer will certainly accept this. If the premium of £150 is paid at the beginning of

the period, while the compensation would have to be paid at the end, and the interest

rate is 10%, then, to be sure he is able to cover the loss, the insurer will need to

put up a starting capital of £760, so that the initial investment of £910, capital plus

premium income, will produce £1,000 at the end of the period. Note that putting

up this capital does not involve any direct cost to the insurer, since he can invest

it as “insurance company capital” at exactly the same rate, 10%, as if he invested it

privately on the market. His end-of-period expected wealth is £900, his final capital less

expected claims cost of £100. The expected present value of profit from the insurance

business is £50, given by £150, the premium income, minus £100, the expected value

of loss.

Suppose now that, unknown to the policy-holder, the insurer puts up no insurance

capital, but instead invests his £760 privately. In the event of loss, he simply pays out

£165 at the end of the period and declares the insurance company bankrupt. Then

his end-of-period expected wealth is £984.50 (£836 for sure from his investment of the

capital, plus 0.9×£165), and the expected present value of profit from the insurance

business is the net expected wealth gain of £135. By not putting up any capital the

insurer simply truncates the loss distribution he faces, thus reducing the expected value

of his claims liabilities. In that case his expected wealth gain is £85 higher than if he
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puts in enough reserves to ensure solvency. We will soon see that the basic point of

this simple example can be shown to hold in much more general cases.

Two objections can be raised to this example. It may pay the insurer not to put

any capital into the insurance business in this one-off case, but what if in fact he is in

business ”for the long term”, i.e. the number of periods can be increased indefinitely?

If he becomes insolvent, he loses the right to continue in the insurance business in the

future, and the loss of future profits may be enough to induce him to put up capital

to avoid insolvency today. In this example however this argument does not hold. If

in every period the insurer puts the requisite capital into the company, his expected

present value of profit over an infinite horizon with a 10% interest rate is £550. If he

puts up no capital, and allows for the fact that in each period he runs a 10% chance of

going out of business, his expected present value of profit is about £660. It is possible

to construct realistic examples where the insurer would find it profitable to put up the

required capital to avoid insolvency. Nevertheless, it remains the case that under quite

plausible circumstances it pays the insurer to put up none of his own capital.

A more fundamental point concerns the buyer’s information about the insurer’s

capital. In the above example, it was assumed that the insurance buyer believed that

the insurer would meet her claim, otherwise she would not have bought insurance in

the first place - she could have obtained exactly the same degree of coverage in the

default case by herself investing the premium. Clearly, if the insurance buyer is fully

informed about the default risk, it always pays the insurer to put up the capital, since
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otherwise he would not be able to sell insurance and would lose even the expected profit

of £50. This point can be generalised: if the insurance buyers are fully informed about

the risk of insolvency, so that this is reflected in their willingness to pay for insurance,

then it always pays the insurer to put up enough capital to ensure losses can be met.

The intuition is straightforward, and can be given most simply for the case of a risk

neutral insurer (the insured is always risk averse). If there is an insolvency risk, the

risk averse policy holder would always be prepared to pay more than the fair premium

(expected value of loss) to buy insurance against this, and the insurer would always

find it profitable to sell it to her. He can only do this however if he puts up enough

capital to cover the loss.

We now generalise this example. We take an infinite time horizon, with a sequence

of discrete time periods (say years). At the beginning of each period, the insurer must

decide on a level of capital K for the insurance business, in the light of a given distribu-

tion of claims costs C, described by the distribution function F (C) with (differentiable)

density f(C), defined over the interval [0, Cmax]. For the moment, we take it that pre-

mium income P is also exogenous, and in particular independent of the level of capital

chosen. This assumes not only that insurance buyers are uninformed, but also that

they do not perceive a relationship between the insurer’s capital and the likelihood that

their claim will be met. The premium income P is collected at the beginning of the

period and invested along with the capital. The only capital market asset is a riskless

security with gross return r > 1. If at the end of the period assets A ≡ (P +K)r are at

least enough to meet claims costs C, then the insurer remains in business and receives
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a continuation value V , that is the expected present value of being in the insurance

business at the end of the first period. If claims costs turn out to be greater than

assets, the insurer pays out his assets and defaults on the remaining claims, losing the

right to the continuation value V . Because of limited liability he does not have to pay

out to claimants more than A.

The insurer can always choose to guarantee solvency by putting in enough capital,

since we have assumed that the upper limit Cmax on possible claims is finite. The

question of interest is: under what circumstances would the insurer choose to stay

solvent, thus making regulation unnecessary?

We assume the insurer is risk neutral and the only cost of capital put into the

insurance business is r, the riskless rate of return on the capital market. It follows that

he maximises the expected present value of net wealth from the insurance business

V0(K) =
∫ A

0
(
V

r
+ K + P − C

r
)dF −K s.t.K ∈ [0, Kmax] (53)

where Kmax = (Cmax/r)− P is the capital required to ensure no default. Now since at

the beginning of each period the future is identical, we have V = V0(K), and so using

this in () and rearranging gives

V0(K) = [
∫ A

0
(K + P − C

r
)dF −K]/(1− F (A)

r
) (54)

So far nothing beyond differentiability has been assumed for the claims distribution

F . Empirically however insurance claims distributions typically belong to the class of
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”increasing failure rate” distributions, with the property that

d

dC
[
1− F (C)

f(C)
] < 0 (55)

An important implication of this property is then that only corner solutions to the

insurer’s wealth maximisation problem are possible: either he chooses K = 0, or K =

Kmax. We show this in

Proposition 1 Proposition1: Given the property of the claims distribution in (55),

any solution to the insurer’s wealth maximisation problem is a corner solution.

Proof. Suppose not, i.e. there exists a value K∗ ∈ (0, Kmax) such that V (K∗) is a

maximum. Then V ′
0(K

∗) = 0, V ′′
0 (K∗) ≤ 0. Using (54) to evaluate these derivatives

gives

V ′
0(K

∗) = [V0(K
∗)f − (1− F )]/(1− F

r
)] = 0 (56)

V ′′
0 (K∗) = r[V0(K

∗)f ′ + f)]/(1− F

r
)] ≤ 0 (57)

Then (56) implies

V0(K
∗) = (1− F )/f (58)

while (57) implies

f 2 + f ′(1− F ) > 0 (59)

and so substituting for V0(K
∗) from (58) into (59) yields a contradiction.

Note that a solution to the problem does exist, since the objective function is con-

tinuous on the compact interval [0, Kmax]. Which endpoint is optimal is given by the
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straightforward comparison of the values

V0(0) = F (rP )(P − C̄0

r
)r/[r − F (rP )] (60)

V0(Kmax) = (P − C̄

r
)r/[r − 1] (61)

where C̄ is the mean of the claims distribution and C̄0 = [F (rP )]−1
∫ rP
0 CdF < C̄ is the

mean of the truncated distribution. As these expressions clearly show, the advantage

to not putting up any capital is that the expected present value of claims falls. The

disadvantage is that there is a risk of going out of business, F (rP ) < 1. It does not

seem possible to say that one of these endpoints is always better than the other. Figure

3 illustrates the possibilities.

Figure 3 about here

There are two major limitations of this model of the insurance firm which could

make any policy conclusions derived from it of limited relevance. The first is that the

only assets available on the market are safe assets. An interesting question in relation

to real insurance companies concerns the interaction between the risks associated with

their asset portfolios and those associated with their insurance activities. The second

limitation is the exogeneity of the premium income. This is not simply a matter of

allowing the firm to choose the premium or volume of insurance sold by maximising

profit with respect to a given demand function. More specifically it implies the as-

sumption that the demand for insurance is independent of the seller’s insolvency risk,

which is clearly a strong and ultimately unacceptable assumption.


