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1 Introduction

The �demand for insurance� can �rst of all be interpreted as the demand
for cover. Insurance is bought by means of a contract, which speci�es a set
of events, whose occurrence will create a �nancial loss for the buyer. The
insurer undertakes to pay compensation (often also called an indemnity) in
the event of these losses, and this is the cover. In exchange the buyer pays a
premium for certain, usually at the time of entering into the contract. The
essential characteristics of all insurance contracts are therefore: loss events,
losses, cover and premium.
The details and complexity of speci�c insurance contracts will however

vary greatly with the particular kinds of risks being dealt with. Though for
theoretical purposes we model insurance as completely de�ned by the above
four elements, we should recognise that in applications to speci�c markets, for
example health, life, property and liability insurance, it will be necessary to
adapt this general framework to the particular characteristics of the market
concerned.
We can go beyond this descriptive account of the insurance contract, to

obtain a deeper interpretation of the demand for insurance and of the eco-
nomic role that insurance markets play. The e¤ect of this interpretation is to
place insurance squarely within the standard framework of microeconomics,
and this has powerful analytical advantages, since it allows familiar and well-
worked out methods and results to be applied. The basis of the approach is
the concept of the state of the world. For present purposes, it is su¢ cient
to de�ne a state of the world as corresponding to an amount of loss su¤ered
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by the insurance buyer (later we will consider more general de�nitions). The
situation in which she incurs no loss is one possible state, and there is then
an additional state for each possible loss. The simplest case is that in which
there is only one possible loss, so we have two states of the world. At the
other extreme, losses may take any value in an interval [0; Lmax]; in which
case there is an uncountable in�nity of possible states of the world, each
de�ned by a point in the interval. We shall consider below models of both
these cases, as well as others.
The key idea is that we can de�ne the buyer�s income in each state of the

world, y;and call this her state contingent income, since the value it takes
depends on which state of the world occurs. Before entering into an insurance
contract, the consumer has given endowments of state contingent incomes,
y0 if no loss occurs, and y0 � L given the occurrence of loss L: If she buys
insurance, she will receive under the contract an amount of compensation q
that will generally depend on L; and will pay for sure, i.e. in every state of
the world, a premium P: Thus with insurance her state contingent incomes
become y0 � P in the no loss state, and y0 � L � P + q in the loss states.
Then the important insight is that by allowing the buyer to vary P and q;
the insurance market is e¤ectively allowing her to vary her state contingent
incomes away from those she is initially endowed with. Insurance permits
trade in state contingent incomes. Moreover, these state contingent incomes
can be interpreted as the �goods�in the standard model of the consumer, and
the �demand for insurance�becomes, under this interpretation, the demand
for state contingent incomes. Then, the insurance decision becomes a special
case of a very well researched and understood model.
In the rest of this chapter, we shall �nd it useful to consider both concepts

of the demand for insurance - the demand for cover, and the demand for
state contingent incomes - side by side, since each gives its own insights
and interpretations. Common to both is the basic microeconomic framework
of optimal choice. The demand for insurance is viewed as the solution to
the problem of maximising a utility function subject to a budget constraint.
This utility function is taken from the leading theory of preferences under
uncertainty, usually referred to as the Expected Utility Theory. The theory of
insurance demand can be regarded as an application, indeed one of the most
successful applications, of this theory. Under it, the consumer is modelled as
having a von Neumann-Morgenstern utility function u(y); which is unique up
to a positive linear transformation and is at least three times continuously
di¤erentiable. Since y is income, we take the �rst derivative u

0
(y) > 0, more
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income is always preferred to less. Moreover, we assume that the insurance
buyer is risk averse, and so u

00
(y) < 0; the utility function is strictly concave.

The sign of u
000
(y); which de�nes the curvature of the marginal utility function

u
0
(y); we leave open for the moment. Note that the utility function is the

same regardless of whether we are in the no loss or loss state. That is,
the utility function is state independent. This is not always an appropriate
assumption for insurance, and we consider the e¤ects of changing it below.
An important property of the utility function concerns whether its Arrow-

Pratt index of risk aversion

A(y) � �u
00
(y)

u0(y)
(1)

is increasing, constant or decreasing in y: We will usually consider all three
cases.
Under this theory, given a choice set of alternative probability distribu-

tions of income, each of which induces a corresponding probability distribu-
tion of utilities, the decision taker chooses that distribution with the highest
expected value of utility, hence the name. We now consider the insights into
the demand for insurance this theory gives us.

2 Two Basic Models of the Demand for In-
surance

The �rst step is to de�ne the budget constraint appropriately, and then,
formulating the problem as the maximisation of utility subject to this con-
straint, we can go on to generate the implications of the model. The simplest
models have just two possible states of the world, a no loss state and a single
state with loss L. The probability of this loss is �: Thus the expected value
of income without insurance is

�y = (1� �)y0 + �(y0 � L) = y0 � �L (2)

with �L the expected value of income loss. We assume L < y0:
Expected utility in the absence of insurance is

�u0 = (1� �)u(y0) + �u(y0 � L) (3)
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Thus, in the absence of insurance the individual has an uncertain income
endowment with an expected utility of �u0:
The insurer o¤ers cover q at a premium rate p; where p is a pure number

between zero and one (as is a probability). The premium amount is P = pq:
We assume that the buyer can choose any value of q � 0: The non negativity
restriction says simply that the buyer cannot gamble on the occurrence of the
loss event, and is a realistic restriction on insurance markets. The assumption
that cover is fully variable may well not hold in a real insurance market (one
may only be able to choose full cover, q = L; as in health insurance, or there
may be an upper limit on cover qmax < L, as in auto insurance) but an
important goal of the analysis is to understand why such restrictions exist,
and so it is useful to begin by assuming the most general case of no restrictions
(beyond non negativity) on cover. Other possibilities are considered below.
Finally, it is convenient to express the premium as the product of cover and
a premium rate. This is a common, but not universal, way of expressing
insurance premia in reality, but of course a premium rate, the price of one
monetary unit of cover, can always be inferred from values of P and q. The
key point is the assumption that p = P=q is constant and independent of q:
As discussed in the Introduction, we obtain alternative model formula-

tions by de�ning demand in terms of cover, on the one hand, and state
contingent income, on the other.

2.1 The q-Model

We assume the buyer chooses q > 0 to maximise expected utility

�u = (1� �)u(y0 � P ) + �u(y0 � L� P + q) (4)

subject to the constraint
P = pq (5)

Clearly, the simplest way to solve this is to substitute from the constraint
into the utility function and maximise

�u(q) = (1� �)u(y0 � pq) + �u(y0 � L+ (1� p)q) (6)

giving the �rst order (Kuhn-Tucker) condition

�u
0
(q�) = �p(1��)u0(y0�pq�)+(1�p)�u

0
(y0�L+(1�p)q�) 6 0 q� > 0 �uqq

� = 0
(7)
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Taking the second derivative of �u(q) we have

�u
00
(q) = p2(1� �)u00(y0 � pq) + (1� p)2�u

00
(y0 � L+ (1� p)q) < 0 (8)

where the sign follows because of the strict concavity of the utility function
at all y: Thus expected utility is strictly concave in q; and the �rst order
condition is both necessary and su¢ cient for optimal cover q�:
The Kuhn-Tucker condition implies two cases:
Optimal cover is positive:

q� > 0) p

1� p =
�u

0
(y0 � L+ (1� p)q�)
(1� �)u0(y0 � pq�)

(9)

Optimal cover is zero:

q� = 0) p

1� p �
�u

0
(y0 � L)

(1� �)u0(y0)
(10)

Taking the case q� > 0 and rearranging (2.8) we have

u
0
(y0 � pq�) =

�

p

(1� p)
(1� �)u

0
(y0 � L+ (1� p)q�) (11)

from which it is easy to show that the following must hold:

p = � , q� = L (12)

p > � , q� < L (13)

p < � , q� > L (14)

We call the case in which p = � the case of a fair premium, that where
p > � the case of a positive loading, and that where p < � the case of a
negative loading. We can then state these �rst results of the model as:
with a fair premium the buyer chooses full cover;
with a positive loading the buyer chooses partial cover;
with a negative loading the buyer chooses more than full cover.
Thus, using (2.10), we have

p = � , u
0
(y � pq�) = u0(y � L+ (1� p)q�), y � pq� = y � L+ (1� p)q� , q� = L(15)

p > � , u
0
(y � pq�) < u0(y � L+ (1� p)q�), y � pq� > y � L+ (1� p)q� , q� < L(16)

p < � , u
0
(y � pq�) > u0(y � L+ (1� p)q�), y � pq� < y � L+ (1� p)q� , q� > L(17)
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where the last two results follow from the fact that u
0
(:) is decreasing in its

argument, i.e. from risk aversion.
Taking the case of zero cover, since risk aversion implies u

0
(y0 � L) >

u
0
(y0); p must be su¢ ciently greater than � for this case to be possible.
We illustrate these results in Figure 1. The �ve curves shown there graph

the function �u
0
(q) for varying values of p; given the remaining parameters of

the problem. The lower is p; the higher is the corresponding curve (we prove
this below). The lowest two curves correspond to values of p su¢ ciently high
that optimal q is zero. Otherwise q� is given by the intersection of a curve
with the q-axis.The negative slopes of the curves follow from (.). Note that
in the case of the lowest curve, the buyer would really like negative cover, but
this is not permitted. The three upper curves illustrate the cases of partial
cover, full cover and more than full cover respectively.
Figure 1 about here
We can obtain an alternative diagrammatic representation of the equi-

librium, which turns out to be useful in later applications of the analysis,
as follows. Given the condition in (2.8), assume q� > 0 and rewrite the
condition as

�u
0
(y0 � L� P � + q�)

(1� �)u0(y0 � P �) + �u0(y0 � L� P � + q�)
= p (18)

where P � = pq� is the premium payment at the optimum. The reader should
con�rm that this is the condition that would be obtained by solving the
problem of maximising expected utility in (.) with respect to P and q; and
subject to the constraint in (.). We can interpret the ratio on the LHS of
(.) as a marginal rate of substitution between P and q; i.e. as the slope of
an indi¤erence curve in (q; P )-space, and then this condition has the usual
interpretation as the equality of marginal rate of substitution and price, or
tangency of an indi¤erence curve with a budget line.
This is illustrated in Figure 2. The lines show the constraint P = pq for

varying values of p: The indi¤erence curves show (q; P )-pairs that yield given
levels of expected utility. We shall justify the shape shown in a moment.
Optimal q in each case is given by a point of tangency. For p = �; this
point corresponds to L; as we have already established. The reader should
illustrate a case in which q� = 0:
Figure 2 about here.
It remains to justify the shapes of the indi¤erence curves shown in Figure
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2. Along any indi¤erence curve in the (q; P )-space, we must have

�u(q; P ) = (1� �)u(y0 � P ) + �u(y0 � L� P + q) = k (19)

for some constant k: Using subscripts to denote partial derivatives, we have

�uq = �u
0
(y0 � L� P + q) (20)

�uP = �[(1� �)u0(y0 � P ) + �u
0
(y0 � L� P + q)] (21)

�uqq = �u
00
(y0 � L� P + q) (22)

�uqP = �uPq = ��u
00
(y0 � L� P + q) (23)

�uPP = �u
00
(y0 � L� P + q) + (1� �)�u

00
(y0 � P ) (24)

Then, from the Implicit Function Theorem, we have that the slope of an
indi¤erence curve is

dP

dq
= � �uq

�uP
> 0 (25)

so this justi�es the positive slopes of the indi¤erence curves in Figure 2.
Moreover,setting q� = L gives

dP

dq
= � (26)

so that at this point on the q-axis all indi¤erence curves have the same slope,
�:
To justify the curvature, consider �rst Figure 3. The characteristic of this

curvature is that all points in the interior of the convex set formed by the
indi¤erence curve yield a higher level of expected utility than any point on
the indi¤erence curve. For example point A in the �gure must yield a higher
expected utility than point B because it o¤ers the same cover for a lower
premium. Since B and C yield the same expected utility, A must be better
than C also. A function having this property is called strictly quasiconcave.
Thus we have to prove that the function �u(q; P ) is strictly quasiconcave.
The easiest way to do this is to show that �u(q; P ) is in fact strictly concave,
because every strictly concave function is also strictly quasiconcave. �u(q; P )
is strictly concave if the following conditions are satis�ed

�uqq < 0 (27)

�uqq �uqP
�uPq �uPP

= �uqq�uPP � �uPq�uqP > 0 (28)
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The �rst condition is satis�ed, because of risk aversion. By inserting the
above expressions for the second order partials and cancelling terms we obtain
that the determinant is equal to

(1� �)�u00(y0 � L� P + q)u
00
(y0 � P ) > 0 (29)

as required. Intuitively, since the utility function is strictly concave in income,
and income is linear in P and q; we can expect it to be strictly concave in
these variables.
Figure 3 about here
To summarise the results so far: a risk averse insurance buyer who chooses

cover to maximise expected utility, given a constant premium rate p; will
choose full cover if this premium rate is equal to the loss probability, partial
cover if premium rate exceeds loss probability, and more than full cover if
premium rate is below loss probability. From the �rst order condition (.), we
can solve for optimal cover as a function of the exogenous variables of the
problem, income, the premium rate (price), the amount of loss, and the loss
probability

q� = q(y0; p; L; �) (30)

We call this function the buyer�s cover demand function. We consider its
main properties below.

2.2 The y-Model

We now let the choice variables in the problem be the state contingent in-
comes y1 and y2 respectively, where

y1 = y � pq (31)

y2 = y � L+ (1� p)q (32)

The buyer�s expected utility is now written as

�u(y1; y2) = (1� �)u(y1) + �u(y2) (33)

An indi¤erence curve corresponding to this expected utility function is shown
in Figure 4. Since the function is strictly concave in incomes, it is strictly
quasiconcave, and so the indi¤erence curve has the curvature familiar from
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the standard model of the consumer. Its slope at a point, the marginal rate
of substitiution, is given by

dy2
dy1

=
(1� �)u0(y�1)
�u0(y�2)

(34)

Note therefore that at a point on the certainty line OC; along which y1 = y2;
this slope becomes equal to the probability ratio �(1� �)=�:
Figure 4 about here
Now, solving for q in (.), substituting into (.) and rearranging gives

(1� p)[y0 � y1] + p[(y0 � L)� y2] = 0 (35)

or
(1� p)y1 + py2 = y0 � pL (36)

We can interpret this as a budget constraint, with (1 � p) the price of y1;
p the price of y2; and y0 � pL �endowed wealth�, a constant, given p. The
point where y1 = y0; y2 = y0 � L clearly satis�es this constraint. Thus we
can draw the constraint as a line with slope �(1 � p)=p; passing through
the point (y0; y0 � L); as shown in Figure 5. The interpretation is that by
choosing q > 0; the buyer moves leftward from the initial endowment point
(y0; y0�L); and, if there are no constraints on how much cover can be bought,
all points on the line, including the certain income, yC ; are attainable. The
price ratio or rate of exchange of the state contingent incomes is �(1� p)=p:
The demand for insurance can now be interpreted as the demand for y2;
income in the loss state. Note that the budget line is �atter, the higher is p:
Figure 5 about here
The elimination of cover q to obtain this budget constraint in (y1; y2)-

space is more than just a simple bit of algebra. It can be interpreted to
mean that what an insurance market essentially does is to make available
a budget constraint that allows the exchange of state contingent incomes:
buying insurance means giving up income contingent on the no-loss state in
exchange for income in the loss state, at a rate determined by the premium
rate in the insurance contract.
Solving the problem of maximising expected utility in (.) subject to

the budget constraint (.) yields �rst order conditions on the optimal state
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contingent incomes

(1� �)u0(y�1)� �(1� p) = 0 (37)

�u
0
(y�2)� �p = 0 (38)

(1� p)y�1 + py�2 = y0 � pL (39)

The �rst two can be expressed as

(1� �)u0(y�1)
�u0(y�2)

=
1� p
p

(40)

which has the interpretation of equality of the marginal rate of substitution
with the price ratio, or tangency of an indi¤erence curve with budget line.
Writing this condition as

u
0
(y�1) =

�

p

1� p
1� �u

0
(y�2) (41)

allows us to derive the results

p = � , u
0
(y�1) = u

0
(y�2), y�1 = y

�
2 (42)

p > � , u
0
(y�1) < u

0
(y�2), y�1 > y

�
2 (43)

p < � , u
0
(y�1) > u

0
(y�2), y�1 < y

�
2 (44)

Referring back to (.) and (.), equal state contingent incomes must imply full
cover, a higher income in the no loss state must imply partial cover, and a
higher income in the loss state must imply more than full cover. Thus we
have the same results as before.
This solution is illustrated in Figure 6. De�ne the expected value line by

(1� �)y1 + �y2 = �y (45)

This is clearly also a line passing through the initial endowment point. Recall
that any indi¤erence curve in (y1; y2)-space has a slope of �(1� �)=� at the
point at which it cuts the certainty line OC. Then clearly the cases of full,
partial and more than full cover correspond to the cases in which the budget
constraint de�ned by p is respectively coincident with, �atter than, or steeper
than the expected value line (see the �gure), since the coverage chosen, as
long as it is positive, is always at a point of tangency between an indi¤erence
curve and a budget line. Note that if the budget line is so �at that it does
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not intersect the indi¤erence curve passing through the initial endowment
point, then we have the case where q� = 0; the buyer stays at the initial
endowment point.
Figure 6 about here
It is useful to be able to read o¤ from the �gure in state contingent income

space the amount of cover bought. Figure 7 shows how to do this. Given
the optimal point a; draw a line parallel to the certainty line. This therefore
has a slope of 1, and cuts the line ce at b: Then the length be represents the
cover bought. To see this note that ed = pq�; while bd = ad = (1� p)q�: So
be = bd+ de = pq� + (1� p)q� = q�:
Figure 7 about here
The y-model allows us to solve for the desired state contingent incomes

as functions of the exogenous variables of the problem

y�s = ys(y0; p; L; �) s = 1; 2 (46)

Thus we have demand functions for state contingent incomes as an alternative
way, to that given by the cover demand function, of expressing the demand
for insurance. The two models, the q-model and the y-model, are of course
fully equivalent, and both are used frequently in the literature. The q-model
is more direct and often easier to handle mathematically. The advantage of
the y-model on the other hand is that it allows the obvious similarities with
the standard consumer theory to be exploited, especially in the diagrammatic
version. In the remainder of this book we will use whichever model seems
more suitable for the purpose in hand.

3 Comparative Statics: The Properties of the
Demand Functions

We want to explore the relationships between the optimal value of the en-
dogenous variable, the demand for insurance, and the exogenous variables
that determine it, y0; p; �; and L: For an algebraic treatment, the q-model is
more suitable, but we also exploit its relationship with the y-model to obtain
additional insights.
Recall that the �rst order condition of the q-model, assuming q� > 0; is

�uq = �p(1� �)u
0
(y0 � pq�) + (1� p)�u

0
(y0 � L+ (1� p)q�) = 0 (47)
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Applying the Implicit Function Theorem we have that

@q�

@y0
= � �uqy0

�uqq
(48)

@q�

@p
= � �uqp

�uqq
(49)

@q�

@L
= � �uqL

�uqq
(50)

@q�

@�
= � �uq�

�uqq
(51)

We have already shown that, because of risk aversion, �uqq < 0: Thus the sign
of these derivatives is in each case the same as that of the numerator.
To see the intuition for this, consider Figure 8. This shows an equilibrium

with q� > 0 as determined by the �uq curve. Now, if a change in an exogenous
variable shifts the curve up, i.e. has a positive e¤ect on �uq at the point q�;
then, given that the curve has a negative slope (�uqq < 0), the value of q at
which it cuts the horizontal axis must increase, and conversely if the change
shifts the curve down. Thus we just have to identify the e¤ect of a change in
the value of an exogenous variable on the marginal expected utility of cover.
Figure 8 about here
The E¤ect of a Change in Income
We have that

�uqy0 = �p(1� �)u
00
(y0 � pq�) + (1� p)�u

00
(y0 � L+ (1� p)q�) (52)

Consider �rst the case in which p = � and so q� = L: Inserting these values
gives

@q�

@y0
= � �uqy0

�uqq
= 0 (53)

The reason is intuitively obvious. Since full cover is bought, and L stays
unchanged, a change in income has no e¤ect on insurance demand. More
interesting is the case in which p > � and so q� < L: In that case, as the
reader should check, we have �uqy0 R 0; i.e. the e¤ect cannot be signed,
insurance demand could increase or decrease with income.
This indeterminacy should not come as a surprise to anyone who knows

standard consumer theory: income e¤ects can typically go either way. Thus
insurance cover can be an inferior or a normal good. It is however of interest
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to say a little more than this, by relating this term to the buyer�s attitude
to risk. To do this we make use of the y-model. Given the optimal incomes
in the two states, we have y�1 > y

�
2 because of partial cover. From the �rst

order condition in the y-model we have

p(1� �) = (1� p)�u0(y�2)
u0(y�1)

(54)

Substituting this into (.) gives

�uqy0 = �u00(y�1)
(1� p)�u0(y�2)

u0(y�1)
+ (1� p)�u00(y�2) (55)

= (1� p)�u0(y�2)[
u
00
(y�2)

u0(y�2)
� u

00
(y�1)

u0(y�1)
] (56)

Recall now the de�nition of the Pratt-Arrow measure of (absolute) risk aver-
sion

A(y) � �u
00
(y)

u0(y)
(57)

We can then write

�uqy0 = (1� p)�u
0
(y�2)[A(y

�
1)� A(y�2)] (58)

Thus
�uqy0 R 0 (59)

according as
A(y�1) R A(y�2) (60)

Since y�1 > y�2; insurance cover is a normal good if risk aversion increases
or is constant with income (A(y�1) � A(y�2)), and an inferior good if risk
aversion decreases with income (A(y�1) < A(y�2)). Since the latter is what
we commonly expect, the conclusion is that we expect that insurance is
an inferior good. The intuition is straightforward: if an increase in income
increases one�s willingness to bear risk, then one�s demand for insurance falls,
other things equal.
This could be bad news for insurance companies: the demand for insur-

ance could well be predicted to fall as incomes rise. It could also be bad news
for the theory, since the evidence suggests that the opposite has happened.
However, a resolution might well be tucked away in the �other things equal�
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clause. In reality, we would expect that as incomes rise, so does the value
of the losses insured against. This is almost certainly true in health, life,
property and liability insurance. As we now see, this increases the demand
for insurance.
The E¤ect of a Change in Loss
We have that

�uqL = �(1� p)�u
00
(y0 � L+ (1� p)q�) > 0 (61)

Thus, as we would intuitively expect, given risk aversion, an increase in loss
increases the demand for cover, other things being equal.
The E¤ect of a Change in Premium Rate
The e¤ects of a price change on demand are always of central interest and

importance. We have

�uqp = �[(1� �)u
0
(y�1) + �u

0
(y�2)] + [p(1� �)u

00
(y�1)� (1� p)�u

00
(y�2)]q

� (62)

This too cannot be unambiguously signed, since the �rst term is negative
while the second could have either sign. But notice that the second term
is just �uqy0q�: In fact we have a standard Slutsky equation, which we can
write as

@q�

@p
= � �uqp

�uqq
=
(1� �)u0(y�1) + �u

0
(y�2)

�uqq
+ q�

uqy0
�uqq

(63)

The �rst term is the substitution e¤ect, and is certainly negative (�uqq < 0);
while the second is the income e¤ect and, as we have seen, could be positive
or negative (or zero). If uqy0 � 0; this income e¤ect is negative or zero, and so
the demand for cover certainly falls as the premium rate (price) rises. That
is, there is no ambiguity if absolute risk aversion increases or is constant with
income. On the other hand, if insurance is an inferior good, the income e¤ect
is positive and so works against the substitution e¤ect. That is, insurance
may be a Gi¤en good if risk aversion decreases su¢ ciently with income.
The intuition is also easy to see, in terms of the y-model. A fall in the

premium rate reduces the price of income in state 2 relative to that in state
1, and so, with utility held constant, y2 will be substituted for y1; implying
an increased demand for cover. However, the fall in premium also increases
real income, to an extent dependent on the amount of cover already bought,
q�; and this will tend to reduce the demand for insurance if risk aversion falls
with income, and increase it if risk aversion increases with income.
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The E¤ect of a Change in Loss Probability

�uq� = pu
0
(y�1) + (1� p)u

0
(y�2) > 0 (64)

Thus, as we would expect, an increase in the risk of loss increases demand
for cover. Note, however, there is a strong �other things equal�assumption
here. In general we would not expect the premium rate to remain constant
when the loss probability changes, though we need some theory of the supply
side of the market before we can predict how it would change.

4 Multiple Loss States and Deductibles

The simple two-state model considered so far in this chapter is useful, but
of course limited. One aspect of this limitation is that the idea of �partial
cover�is very simple: in the single loss-state, q < L: In reality, when there
are multiple loss states, there can be di¤erent types of partial cover. One
is the case of coinsurance, where a �xed proportion of the loss is paid in
each state. The other is the case of a deductible: nothing is paid for losses
below a speci�ed value, called the deductible; when losses exceed this value,
the insured receives an amount equal to the loss minus the deductible.
In practice, a deductible is a much more commonly observed form of

partial cover than coinsurance. We now examine why this is. It can be
shown that, when o¤ered a choice between a contract with a deductible and
any other contract with the same premium, assumed to depend only on the
expected cost to the insurer of the cover o¤ered, a risk averse buyer will
always choose the deductible. This o¤ers an explanation of the prevalence of
deductibles and at the same time a con�rmation of the predictive power of
the theory.
We generalise the two-state model by assuming now that the possible loss

lies in some given interval: L 2 [0; Lm]; and has a given probability function
F (L) with density f(L) = F 0(L): Under coinsurance we have cover

q = �L � 2 [0; 1] (65)

with � = 0 implying no insurance and � = 1 implying full cover. Under a
deductible we have

q = 0 L 6 D (66)

q = L�D L > D (67)
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where D denotes the deductible, with D = Lm implying no insurance and
D = 0 full cover. The di¤erence between the two contracts is illustrated in
Figure 9, which shows cover as a function of loss.
Given the premium amount P; and an endowed income y0 in the absence

of loss, the buyer�s state-contingent income in the case of coinsurance is

y� = y0 � L� P + q = y0 � (1� �)L� P (68)

and in the case of a deductible is

yD = y0 � L� P + q = y0 � L� P +max(0; L�D) (69)

Figure 10 shows these incomes. The important thing to note about a de-
ductible is that for L > D; the insurance buyer is fully insured at the margin:
for losses above the deductible, her income becomes certain, and equal to

ŷD = y0 � L� P + (L�D) = y0 � P �D (70)

It is this fact that accounts for the superiority, to a risk-averse buyer, of the
deductible contract over other forms of contract with the same premium (and
expected cost to the insurer). Under a deductible, income cannot fall below
ŷD; however high the loss.
Figures 9 and 10 about here
Consider now the probability distribution function for the buyer�s income

under a given deductible contract. We have

prob(yD 6 y
0
) for y

0 2 [ŷD; y0 � P ]) (71)

= prob(L > L0
) for L

0 2 [0; D] (72)

= 1� F (L0
) (73)

prob(yD < ŷD) = 0 (74)

This function H(y) is illustrated in Figure 11. To the left of ŷD it is just the
horizontal axis, to the right it is determined by F (L):
Now consider another type of contract with the same expected value of

cover as the deductible contract in question, and therefore the same pre-
mium. This alternative could be a coinsurance contract, or any other kind
of contract. We can show that it must have the kind of distribution function
shown in the �gure as G(y); with the area abc equal to the area cde: But
this then means that H(y) is better than G(y) in the sense of second order
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stochastic dominance. That is, H(y) would be preferred to G(y) by any risk
averse buyer. G(y) is riskier than H(y); but has the same expected value.
To see that any alternative to the deductible contract must have the

general properties of G(y); note the following points:

� If the deductible contract and the alternative contract have the same
expected cost, i.e. value of cover, to the insurer, they imply the same
expected income to the buyer. The expected value of income under each
of the contracts is E[y0 � L � P + q]; and so, given that y0; E[L] and
P are the same in each case, EG[q] = EH [q] implies that the expected
incomes are equal.

� It is a standard result that if two distributions with the same support
have the same expected value, then the areas under the distribution
functions are equal. Thus the areas under H(y) and G(y) in the �gure
must be the same.

� This implies that if a contract tries to improve on the deductible by
having a lower distribution function to the right of D in the �gure,
it must have a higher distribution function to the left of D; and the
corresponding areas must be the same.

Figure 11 about here

The impressive aspect of this result is its generality and simplicity. How-
ever, it is also useful to consider the explicit solution for an optimal contract
in the case of multiple loss states, allowing for the possibility that the pre-
mium may not be fair. The preceding discussion tells us what we should be
looking for, in the case of a positive loading - a contract with a deductible.
It is simplest to use the q-model, and a �nite number of loss states with

losses, L1; :::; LS: We order the states so that 0 < L1 < L2 < ::: < LS;with
corresponding loss probabilities �s > 0; and with �0 = 1 �

PS
s=1 �s > 0

the probability of no loss. The premium amount P is proportional to the
expected value of cover, and is given by

P = k
SX
s=1

�sqs (75)
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with k � 1 (we ignore the case of a negative loading). The insurance buyer�s
expected utility is

�u(q1; :::; qS; P ) = �0u(y0 � P ) +
SX
s=1

�su(y0 � Ls � P + qs) (76)

and she chooses cover in each state to maximise this, subject to the constraint
de�ning the premium in (.) and the non negativity conditions

qs � 0 s = 1; :::; S (77)

These constraints play an important role, as we will see.
Forming the Lagrange Function

L = �0u(y0 � P ) +
SX
s=1

�su(y0 � Ls � P + qs) + �(P � k
SX
s=1

�sqs) (78)

we have the Kuhn-Tucker conditions, which, (since u
00
< 0), are both neces-

sary and su¢ cient for an optimum

@L

@qs
= �su

0
(y0 � Ls � P � + q�s)� ��k�s � 0 q�s � 0 q�s

@L

@qs
= 0 (79)

@L

@P
= �[�0u

0
(y0 � P �) +

SX
s=1

�su
0
(y0 � Ls � P � + q�s)] + �� = 0 (80)

@L

@�
= P � � k

SX
s=1

�sq
�
s = 0 (81)

where an asterisk denotes an optimal value. We assume that cover in at least
one state is positive, so that the premium is positive, otherwise the problem
is uninteresting. This implicitly puts an upper bound on k; and means that
@L
@qs
= 0 for at least one s:
Intuitively, we expect that with k = 1; we will have full cover, i.e. q�s = Ls;

for all s , while for k > 1; we will obtain a contract with a deductible. We
now derive these results formally.
A �rst and most useful result is the following. Suppose, as we assume,

we have q�s > 0 for some s: Then for every higher loss state s + t; with
t = 1; ::; S � s; we must have q�s+t > 0: This is true whatever the value of k:
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The proof is by contradiction. Suppose q�s > 0 but q�s+t = 0 for some
t = 1; ::; S � s: Then from the conditions we have

u
0
(y0 � Ls � P � + q�s) = ��k � u

0
(y0 � Ls+t � P �) (82)

By strict concavity of utility this implies

y0 � Ls � P � + q�s � y0 � Ls+t � P � (83)

implying
Ls+t � Ls � q�s (84)

which contradicts the fact that Ls < Ls+t:
Take now the case in which k = 1, so the premium is fair. If we could

assume that all q�s > 0; then the full cover result is easy to derive. Thus, the
condition on each q�s is

u
0
(y0 � Ls � P � + q�s) = �� (85)

implying that marginal utility in each loss state is equal. Inserting this into
condition (.) then gives

�[�0u
0
(y0 � P �) + ��

SX
s=1

�s] + �
� = 0 (86)

implying

�0u
0
(y0 � P �) = (1�

SX
s=1

�s)�
� = �0�

� (87)

and therefore
u
0
(y0 � P �) = u

0
(y0 � Ls � P � + q�s) (88)

which holds if and only if q�s = Ls; for all s.
However, we should prove, rather than assume, that cover is positive in

each loss state in this case. Again we use a proof by contradiction. Suppose
for the �rst t loss states cover is zero, and for the remaining states positive.
Then the conditions become

u
0
(y0 � Ls � P �) � �� s = 1; ::; t (89)

u
0
(y0 � Ls � P � + q�s) = �� s = t+ 1; ::; S (90)
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Note that these conditions imply that for any loss state s
0 � t; we must have

Lt+1 � q�t+1 � Ls0 > 0 (91)

We can write condition (.) as

�0u
0
(y0 � P �) +

tX
s=1

�su
0
(y0 � Ls � P �)] = (1�

SX
s=t+1

�s)�
� = (�0 +

tX
s=1

�s)�
�

(92)
implying

�0[u
0
(y0 � P �)� ��] =

tX
s=1

�s[�
� � u0(y0 � Ls � P �)] (93)

We know from conditions (.) and (.) that the RHS of this equation must be
non negative, and so we have

u
0
(y0 � P �) � �� (94)

implying
y0 � P � � y0 � Lt+1 � P � + q�t+1 (95)

or Lt+1� q�t+1 � 0: But this contradicts (.). This implies all q�s > 0; implying
in turn, as we just saw, full cover in every loss state.
The intuition for this full cover result is essentially the same as that in

the case of a single loss state. When faced with a fair premium, the buyer
wants to equalise marginal utilities of income across all states, including the
no-loss state. Since marginal utility is not state dependent, this implies equal
incomes across all states, which in turn implies full cover in every loss state.
Turning now to the case in which k > 1; the proof we just gave, to the

e¤ect that cover must be positive in all states, no longer goes through. We
now have the �rst order conditions

u
0
(y0 � Ls � P �) � k�� s = 1; ::; t (96)

u
0
(y0 � Ls � P � + q�s) = k�� s = t+ 1; ::; S (97)

where t is as before the highest loss state in which cover is zero. This again
must imply Lt+1�q�t+1 � Ls0 > 0 for any loss state s

0 � t: However, condition
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(.) now yields

�0u
0
(y0�P �)+

tX
s=1

�su
0
(y0�Ls�P �)] = (1�k

SX
s=t+1

�s)�
� < (�0+

tX
s=1

�s)�
�

(98)
from which it is no longer possible to obtain a contradiction. Indeed we
should not expect one: we know that with a positive loading there will be
partial cover, and that this takes the form of a deductible, and we now have
to show how this follows from the conditions.
First note that in the loss states s = t+1; ::; S in which cover is positive,

we have

u
0
(y0 � Lt+1 � P � + q�t+1) = :::: = u

0
(y0 � LS � P � + q�S) = k�� (99)

and therefore

y0 � Lt+1 � P � + q�t+1 = :::: = y0 � LS � P � + q�S (100)

implying
Lt+1 � q�t+1 = :::: = LS � q�S = D� (101)

where D� is the optimal deductible. The intuition here is that where cover
is positive, it is chosen to equalise marginal utilities across these states, im-
plying equal incomes across these states, and this in turn implies a constant
di¤erence between loss and cover, i.e. a deductible.
Secondly, as we already saw, in the �rst t states, the fact that cover is

zero implies
L1 < ::: < Lt � Lt+1 � q�t+1 = D� (102)

i.e. zero cover implies that the loss in these states is less than the deductible.
Note that in this discrete model, these two aspects of a deductible, that

of a constant di¤erence between loss and cover in positive cover states, and
loss less than deductible in no-cover, lower loss states, are separable, in the
sense that though the former will always hold, the latter may not. Thus it
is possible, for L1 su¢ ciently large, that qs > 0; all s: In that case, condition
(.) implies

�0u
0
(y0 � P �) = [1� k(1� �0)]�� (103)

This shows that k > 1 rules out the equalisation of marginal utilities between
the no-loss and loss states, and implies the partial cover result, while the
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equalisation of marginal utilities across loss states implies that this takes the
form of a deductible. Thus it is straightforward to show that

k > 1, 1� k(1� �0)
�0

< 1 (104)

and so
u
0
(y0 � P �) < k�� = u

0
(y0 � P � �D�) (105)

implying
D� > 0 (106)

In a model in which losses lie in an interval [0; Lm]; the two aspects of a
deductible inevitably occur together, since for any positive deductible, there
is always an interval of loss values su¢ ciently close to zero that lies below
it. When the lowest possible loss is however strictly positive, it could always
happen that cover would be positive in all states. Remember that insurance
is all about transferring income from states with relatively low expected
marginal utilities of income to states with relatively high expected marginal
utilities of income. If the state with the lowest loss is nevertheless one with
a relatively high marginal expected utility of income, cover could be positive
in all states even if there is a deductible.
Finally, note that if the constraint qs � 0 is non-trivially binding at the

optimum, this implies that the insurance buyer would be better o¤ if she
could actually choose negative cover in that state, i.e. make a payment to
the insurer if that state occurs. The intuition is that that would allow a
reduction in premium, and an increase in cover in higher loss states, and so
a further transfer of income from low loss, low marginal utility of income
states, to high loss, high marginal utility of income states. An interesting
question, but one we do not explore here, is why this is not allowed under
typical insurance contracts1.

5 Insurance Demand with State Dependent
Utility

It seems reasonable to believe that for at least some types of losses for which
insurance can be bought, the utility of income will depend on whether or

1But see the later discussion of the Raviv model in Chapter X below.
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not a particular event takes place, where this event may or may not also
cause an income loss. Sickness is an obvious example. The utility of a given
amount of income if one is sick may well di¤er from that if one is healthy,
while sickness may cause a loss of employment income, medical costs and so
on. A formal extension of the model of insurance demand to this case is quite
straightforward, particularly if we revert to the case of a single loss state.
We again take state 1 as the no-loss state and state 2 as the loss-state, but

now denote the utility function in state s = 1; 2 as us(y); with u1(y
0
) > u2(y

0
);

for all y
0
> 0:Otherwise these are standard von Neumann-Morgenstern utility

functions. For simplicity we shall always assume that insurance is o¤ered at a
fair premium, since this brings out clearly the implications of state dependent
utilities. Extension to other cases is left as an exercise. Let p therefore denote
both the probability of loss and the premium rate. Formulating the insurance
problem as one of choosing state contingent incomes (the y-model), we have
to solve

maxy1y2(1� p)u1(y1) + pu2(y2) s:t: (1� p)y1 + py2 = �y (107)

where �y is the expected value of income, determined by the endowed incomes
in the no-loss and loss states respectively. Assuming an interior solution, it
is easy to see that the optimum requires

u
0

1(y
�
1) = u

0

2(y
�
2) (108)

At a fair premium, the insurance buyer will always want to equalise marginal
utilities of income across states. However, this implies equality of incomes
across states if and only if the marginal utility of income is not state depen-
dent, which is something of a special case. More generally, we want to see
what this condition of equality of marginal utilities implies for the choice of
incomes, and therefore of insurance cover, across states, when the utility of
income is state dependent.
We can distinguish three senses in which we could talk of �full insurance�:

� choice of cover that equalises marginal utilities of income across states

� choice of cover that equalises total utilities of income across states

� choice of cover that equalises income across states.
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When utility is state independent and the premium is fair, these three
coincide: choice of cover equalises incomes, marginal and total utilities. Un-
der state dependent utility, as we have just seen, marginal utilities will be
equalised, but it remains an open question whether incomes and total utili-
ties are equalised. To explore this further, we have to �nd an economically
meaningful way of relating the state dependent utility functions to each other.
A nice way of doing this was developed by P J Cook and D A Graham.

At every income level y, assume there is an amount of income w(y) that
satisi�es

u1(y � w(y)) = u2(y) (109)

We could de�ne w(y) as the consumer�s maximal willingness to pay to be in
the �good�state 1 rather than the �bad�state 2. The notation emphasises
that this willingness to pay may depend on the income level. Figure 12
illustrates this in the utility-income space. In the �gure, for any given level
of y in state 2, w(y) gives the reduction in this income level required to yield
an equal level of utility in state 1. It is just the horizontal di¤erence between
the two curves. This is a useful way to describe the relationship between the
curves as y changes.
Figure 12 about here
To develop this further, since (.) is an identity, di¤erentiating through

with respect to y gives

u
0

1(y � w(y))[1� w
0
(y)] = u

0

2(y) (110)

or

w
0
(y) = 1� u

0
2(y)

u
0
1(y � w(y))

(111)

Thus the way in which the willingness to pay changes as income varies is
determined by the slopes of the utility functions at equal utility values. It
seems reasonable to assume w

0
(y) > 0: For example, we would expect the

willingness to pay to be healthy rather than sick at least not to fall with
income. Thus we have

w
0
(y) = 0) u

0

2(y) = u
0

1(y � w(y))) u
0

2(y) > u
0

1(y) (112)

w
0
(y) > 0) u

0

2(y) < u
0

1(y � w(y))) u
0

2(y) R u
0

1(y) (113)

for all y: The �gure illustrates the case of w
0
(y) = 0.
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To see the e¤ects of state dependent utility on the insurance decision,
given the restriction in (.), we move to the state contingent income space in
Figures 13 and 14. In the case where utility is not state dependent, we regard
the 450 line as the certainty line, because equality of incomes implies equality
of utilities. In the state dependent utility case, the 450 line still corresponds
to certainty of income, but it no longer implies certainty of utility. A point
on this line implies that utility in state 2 is below that in state 1 (refer back
to Figure 12). In order to determine a locus of points at which utility across
states is equal, i.e. certain, we know from (.) that we have to subtract w(y)
from each income level in state 2, the bad state, to obtain the income level in
state 1, the good state, that yields the same utility level. Where w

0
(y) = 0;

this implies the line shown as WW in Figure 13, whereas when w
0
(y) > 0 we

have the curve WW
0
in Figure 14.

To analyse the insurance decision, take �rst the case shown in Figure 13.
The initial incomes are as shown at point A; and the line passing through this
point has slope �(1�p)=p: The optimality condition, given the fair premium,
is that state contingent incomes after insurance cover is chosen must satisfy
u
0
1(y

�
1) = u

0
2(y

�
2): But if w

0
(y) = 0; (.) shows that we must have

u
0

2(y
�
2) = u

0

1(y
�
2 � w(y�2)) (114)

implying
y�1 = y

�
2 � w(y�2) (115)

The tangency between budget constraint and indi¤erence curve must take
place on the line WW in Figure 13, because marginal utilities of income are
equal along this line. Then there is full insurance of utilities, in the sense
that u1(y�1) = u2(y

�
2); i.e. utilities are equalised across states. But there is

more than full insurance of incomes, since y�2 > y
�
1:

If w
0
(y�1) > 0; the optimum cannot lie on WW

0
in Figure 15, because

along that curve the marginal utility of income in state 2 is less than that in
state 11. An optimal point must lie on the budget line to the right of where
it intersects WW

0
: Thus utility remains less than fully insured, in the sense

that u1(y�1) > u2(y
�
2): That is all that can be said without making further

assumptions about the relation between marginal utilities of income in the
two states. Three cases are possible, as the �gure illustrates:
(a) u

0
2(y) = u

0
1(y) at each y; so marginal utilities are state independent.

Then the optimum is at �; where income is fully insured;
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(b) u
0
2(y) > u

0
1(y); so that at a given income, increasing income increases

utility more in the bad state than in the good. Then the corresponding
indi¤erence curve through � must be �atter than the budget line, and the
optimummust be at a point such as �; where more than full income insurance
is bought;
(c) u

0
2(y) < u

0
1(y); so that at a given income, increasing income increases

utility more in the good state than in the bad. Then the corresponding
indi¤erence curve through � must be steeper than the budget line, and the
optimum is at a point like 
; where less than full income insurance is bought.
An interesting implication of this analysis is that an insurance contract

that restricts cover to the loss actually incurred - actual loss on income from
employment, actual medical costs, in the case of health insurance - is optimal
only if marginal utility of income is state independent.
Figures 13, 14 and 15 about here

6 Insurance Demand and Incomplete Mar-
kets

Up until now, it has been assumed that the insurance buyer faces only one
type of loss against which insurance can be bought. In reality insurance
markets are typically incomplete, in the sense that not all risks an individual
faces can be insured against. Thus one can buy insurance against income
loss arising from ill health, but not against income loss due to �uctautions in
business conditions leading to loss of overtime, short-time working, and loss of
bonuses. In other words, part of one�s income may be subject to �background
risk� which cannot be insured against. We now want to examine, in the
simplest possible model, the e¤ect the existence of an uninsurable risk can
have on the purchase of insurance against an insurable risk, as well as the
question of whether a welfare loss arises from the absence of a market for
insurance against one of the risks. We know that the absence of a market
cannot make the insurance buyer better o¤ - one can always choose not to use
a market if it is not optimal to do so. The question is whether the consumer
is thereby made strictly worse o¤.
Suppose an individual has an income y0; and faces a loss L with proba-

bility � and a loss K with probability �: There are then four possible states
of the world, with associated incomes set out in the following table. It is
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assumed that insurance cover q can be bought against risk of loss L at pre-
mium rate p > �: We are interested in the e¤ect of the non-insurability of
loss K on the buyer�s choice of q:

Loss 0 L
0 y1 = y0 � pq y3 = y0 � L+ (1� p)q
K y2 = y0 � pq �K y4 = y0 � L+ (1� p)q �K

The important point to note is that since only L can be insured against, it
is possible to use the insurance market to transfer income only between sets
of states, but not between all individual states. Insurance allows income to
be exchanged between states 1 and 2, on the one hand, and 3 and 4 on the
other, but not between 1 and 2, or between 3 and 4.
Denote the probability of state s = 1; ::; 4 by �s: Clearly, since these four

states are mutually exclusive and exhaustive,
P

s �s = 1: The exact values of
these probabilities �s will depend on the nature of the stochastic relationship
between the two losses. We consider here the three extreme cases:
(i) the two losses are statistically independent. In that case:
�1 = (1� �)(1� �) - neither loss occurs
�2 = (1� �)� - only K occurs
�3 = �(1� �) - only L occurs
�4 = �� - both losses occur
(ii) the two losses are perfectly positively correlated - either both occur

or both do not occur. In e¤ect then, there is only one loss, L+K; which for
some reason can only be partially insured against. Then
�1 = (1� �) = (1� �) - neither loss occurs
�2 = �3 = 0 - we cannot have only one of the losses occurring
�4 = � = � - both losses occur
(iii) the losses are perfectly negatively correlated - if one occurs the other

does not, and conversely. Then
� = (1� �); � = (1� �);
�1 = �4 = 0
�2 = �
�3 = �
The buyer will choose cover to solve

max
q
�u(q) =

4X
s=1

�su(ys) s:t: q > 0 (116)
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given the speci�c expressions for ys in the Table. The general form of the �rst
order condition will be the same for cases (i) - (iii), but the interpretation
will of course depend on the precise interpretation of the probabilities �s;
which varies across the three cases. The �rst order (Kuhn-Tucker condition)
is

�uq = �p[�1u
0
(y�1) + �2u

0
(y�2)] + (1� p)[�3u

0
(y�3) + �4u

0
(y�4)] 6 0(117)

q� > 0 �uqq
� = 0 (118)

It is straightforward to show that the second order condition is satis�ed.
The condition shows that if q� > 0;

�1u
0
(y�1) + �2u

0
(y�2)

�3u
0(y�3) + �4u

0(y�4)
=
(1� p)
p

(119)

Thus the marginal rate of substitution on the left hand side has to be de�ned
with reference to marginal utilities of income averaged over each subset of
states within which state contingent incomes can not be exchanged. This
is simply because an increase in q reduces incomes in both states 1 and 2
and increases incomes in both states 3 and 4. In order to exchange incomes
between states within a subset we would require an insurance market for the
loss K: We now want to see what e¤ect the presence of the non-insurable
risk has on the purchase of cover against the insurable risk.
Case (i), independence.
Writing in the explicit expressions for the incomes y�s and probabilities �s

we obtain from the �rst order condition

�(1� p)
p(1� �) 6 (1� �)u0(y0 � pq�) + �u

0
(y0 � pq� �K)

(1� �)u0(y0 � L+ (1� p)q�) + �u0(y0 � L+ (1� p)q� �K)
(120)

q� > 0 �uqq
� = 0 (121)

We now have to distinguish between two subcases:
(a) Fair premium, p = �: Then it is easy to see that q� = L; we have full

cover. Thus the background risk makes no di¤erence to the optimal cover
against L. To see this, note that the left hand side of the condition becomes
1 in this case. If q� < L; the denominator in the right hand ratio must
(because u

00
< 0) be greater than the numerator, thus the ratio must be < 1

and the condition cannot be satis�ed. If however q� = L > 0 the ratio on the
right hand side is 1 and equals the left hand side. If q� > L; the numerator
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on the right hand side is larger than the denominator and the condition is
not satis�ed. Intuitively, one might think that, when insurance against L is
available at a fair premium, one might over-insure, to compensate for not
being able to insure against K: In the independence case this intuition is
false, because it simply results in expected marginal utility across the states
in which L does occur becoming smaller than that across the states in which
L does not occur.
(b) Positive loading, p > �: In that case the ratio on the left hand side

becomes � < 1: Then in that case q� = L cannot be optimal, because we just
saw that the right hand ratio would then equal 1. Assume that L > q� > 0;
i.e. the loading is not so large that no cover is bought. We want to know
what e¤ect on choice of cover introduction of the risk K makes. In general,
the answer depends on the precise form of the buyer�s utility function. In
fact we can show the following:
Introducing K; suitably small, increases cover, if and only if absolute risk

aversion decreases with income;
Introducing K; suitably small, reduces cover, if and only if absolute risk

aversion increases with income;
Introducing K; suitably small, leaves cover unchanged, if and only if ab-

solute risk aversion is constant.
Proof: We prove only the �rst, the others follow similarly. Note �rst

that if we want to increase the ratio on the right hand side of (.), we have
to increase q�; since this reduces both incomes and increases both marginal
utilities in the numerator, and increases both incomes and reduces both
marginal utilities in the denominator.
Now consider the equilibrium in the absence of the risk K: This has to

satisfy the condition

� =
u
0
(y0 � pq�)

u0(y0 � L+ (1� p)q�)
(122)

We know then, that when we introduce K; since this leaves � unchanged, if
this reduces the value of the ratio on the right hand side, we will have to
increase q� to restore equality. It is easy to show that the value of the ratio
will be reduced (and cover therefore increased) if

u
0
(y0 � pq�)

u0(y0 � L+ (1� p)q�)
>

u
0
(y0 � pq� �K)

u0(y0 � L+ (1� p)q� �K)
(123)
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that is, if
u
0
(y0 � L+ (1� p)q� �K)
u0(y0 � L+ (1� p)q�)

>
u
0
(y0 � pq� �K)
u0(y0 � pq�)

(124)

For short, write this as

u
0
(y�3 �K)
u0(y�3)

>
u
0
(y�1 �K)
u0(y�1)

(125)

Now assume that K is su¢ ciently small that it is permissible to use the
simple Taylor series approximations

u
0
(y�s �K) � u

0
(y�s)� u

00
(y�s)K s = 1; 3 (126)

Inserting these into (.) and cancelling terms then gives

A(y�3) � �
u
00
(y�3)

u0(y�3)
> �u

00
(y�1)

u0(y�1)
� A(y�1) (127)

Since y�3 < y
�
1(partial cover), this gives the result.

Case (ii): perfect positive correlation.
In this case we can show that ideally, if there is fair insurance the buyer

would like to set q� = L+K; i.e. over-insure on the L-market to compensate
for not being able to insure against K: If p > �; the buyer would like to set
q� < L +K; for reasons with which we are already familiar, and so we just
consider the case of a fair premium. Introducing the appropriate probabilities
and incomes for this case into the �rst order condition gives

(1� �)u0(y0 � pq�)
�u0(y0 � L+ (1� p)q� �K)

=
1� p
p

(128)

implying
u
0
(y0 � pq�)

u0(y0 � L+ (1� p)q� �K)
= 1 (129)

(Note, we can rule out the case in which q� = 0 because then the ratio
on the left hand side is strictly less than one, which does not satisfy the
Kuhn-Tucker condition). Clearly then this condition is satis�ed if and only
if q� = L + K: This is then a case in which the noninsurability of K does
not reduce welfare, though it does change behaviour. However if, for some
reason, cover is restricted in the L-market, for example by q 6 L; then the
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buyer chooses q� = L and is made strictly worse o¤ by the non existence of
the K-market.
Case (iii): perfect negative correlation.
Inserting the appropriate probabilities and incomes into the �rst order

condition gives
(1� �)u0(y0 � pq� �K)
�u0(y0 � L+ (1� p)q�)

> 1� p
p

(130)

We take the fair premium case, in which the condition becomes

u
0
(y0 � pq� �K) > u

0
(y0 � L+ (1� p)q�) (131)

Suppose �rst that q� > 0; so the condition must hold with equality. This
then implies

pq� +K = L� (1� p)q� (132)

or
q� = L�K (133)

Now L and K are exogenous with L R K: Thus we have three possibilities:
(a) L = K: This implies q� = 0; which is a contradiction. In fact in this

case no cover is bought. The reason is that, because of the perfect negative
correlation and the equality ofK and L; income is certain with zero insurance
cover.
(b) L > K: Then q� = L�K > 0: In order to equalise incomes across the

states, cover has to be bought which just makes up the di¤erence between L
and K:
Note a feature of these two cases: the introduction of the second risk K

certainly makes a di¤erence to the insurance decision on the purchase of cover
on the market for insurance against L; but, because of the perfect negative
correlation, there is no welfare loss arising from the absence of a market for
insurance against K:
(c) K > L: Then we would have q� < 0; which is assumed not to be

possible, and again contradicts the assumption that q� > 0: In fact in this case
we have q� = 0: buying positive cover would worsen the income inequality
between the two states, since it reduces income in the state in which K
occurs and L does not. The buyer would actually like to have negative cover,
i.e. o¤er a bet on the occurrence of the loss L; since this would transfer
income from the state in which L occurs to that in which K occurs. In this
case also, the insurance decision on the L-market is certainly a¤ected by the
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existence of the non insurable risk K: The buyer would be made better o¤ if
the K-market existed and the L-market did not.
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